
t it le:	Cognex	Mobile	Barcode	SDK	for	iOS	(v2.0.x)	;	ver:	2.7.x 1	/	34

Cognex	Mobile	Barcode	SDK	for	iOS
(v2.0.x)

Introduct ion

iOS	(formerly	iPhone	OS)	is	a	mobile	operating	system	created	and	developed	by
Apple	Inc.	exclusively	for	its	hardware.	It	is	the	operating	system	that	presently	powers
many	of	the	company's	mobile	devices,	including	the	iPhone,	iPad,	and	iPod	Touch.	It	is
the	second	most	popular	mobile	operating	system	globally	after	Android.

The	iOS	user	interface	is	based	upon	direct	manipulation,	using	multi-touch	gestures.
Interface	control	e lements	consist	of	sliders,	switches,	and	buttons.	Interaction	with	the
OS	includes	gestures	such	as	swipe,	tap,	pinch,	and	reverse	pinch,	all	of	which	have
specific	definitions	within	the	context	of	the	iOS	operating	system	and	its	multi-touch
interface.	Internal	accelerometers	are	used	by	some	applications	to	respond	to	shaking
the	device	(one	common	result	is	the	undo	command)	or	rotating	it	in	three	dimensions
(one	common	result	is	switching	between	portrait	and	landscape	mode).	Apple	has	been
significantly	praised	for	incorporating	thorough	accessibility	functions	into	iOS,	enabling
users	with	vision	and	hearing	disabilities	to	properly	use	its	products.

Major	versions	of	iOS	are	released	annually.	The	current	version,	iOS	12,	was	released	on
October	8,	2018.	It	is	available	for	the	iPhone	5S	and	later	iPhone	models,	the	fifth-
generation	iPad,	the	iPad	Air	and	iPad	Air	2,	the	iPad	Pro,	the	iPad	Mini	2	and	later	iPad	Mini
models,	and	the	sixth-generation	iPod	Touch.	In	iOS,	there	are	four	abstraction	layers:	the
Core	OS,	Core	Services,	Media,	and	Cocoa	Touch	layers.

Overview

The	Cognex	Mobile	Barcode	SDK	(cmbSDK)	is	a	simple,	yet	powerful	tool	for	developing
mobile	barcode	scanning	applications.	Based	on	Cognex's	flagship	DataMan	technology
and	the	Manatee	Works	Barcode	Scanning	SDK,	the	cmbSDK	allows	developers	to	create
barcode	scanning	applications	for	the	entire	range	of	mobile	scanning	devices:	from
smartphones	and	tablets	to	the	MX	line	of	high-performance,	industrial	barcode	scanners.
By	adhering	to	a	few	simple	guidelines,	developers	can	write	applications	that	will	work
with	any	supported	MX	mobile	terminal	or	smartphone	with	little 	or	no	conditional	code.
The	SDK	achieves	this	by	abstracting	the	device	through	a	"reader"	connection	layer:
once	the	application	establishes	its	connection	with	the	desired	reader,	a	single,	unified
API	is	used	to	configure	and	interface	with	the	device.

The	SDK	provides	two	basic	readers:	an	“MX	reader”	for	barcode	scanning	with	devices
like	the	MX-1000	and	MX-1502,	and	a	“camera	reader”	for	barcode	scanning	using	the
built-in	camera	of	the	mobile	device.

Legal	Not ices



t it le:	Cognex	Mobile	Barcode	SDK	for	iOS	(v2.0.x)	;	ver:	2.7.x 2	/	34

The	software	described	in	this	document	is	furnished	under	license,	and	may	be	used	or
copied	only	in	accordance	with	the	terms	of	such	license	and	with	the	inclusion	of	the
copyright	notice	shown	on	this	page.	Neither	the	software,	this	document,	nor	any	copies
thereof	may	be	provided	to,	or	otherwise	made	available	to,	anyone	other	than	the
licensee.	Title	to,	and	ownership	of,	this	software	remains	with	Cognex	Corporation	or	its
licensor.	Cognex	Corporation	assumes	no	responsibility	for	the	use	or	re liability	of	its
software	on	equipment	that	is	not	supplied	by	Cognex	Corporation.	Cognex	Corporation
makes	no	warranties,	e ither	express	or	implied,	regarding	the	described	software,	its
merchantability,	non-infringement	or	its	fitness	for	any	particular	purpose.

The	information	in	this	document	is	subject	to	change	without	notice	and	should	not	be
construed	as	a	commitment	by	Cognex	Corporation.	Cognex	Corporation	is	not
responsible	for	any	errors	that	may	be	present	in	e ither	this	document	or	the	associated
software.

Companies,	names,	and	data	used	in	examples	herein	are	fictitious	unless	otherwise
noted.	No	part	of	this	document	may	be	reproduced	or	transmitted	in	any	form	or	by	any
means,	e lectronic	or	mechanical,	for	any	purpose,	nor	transferred	to	any	other	media	or
language	without	the	written	permission	of	Cognex	Corporation.

Copyright	©	2017.	Cognex	Corporation.	All	Rights	Reserved.
Portions	of	the	hardware	and	software	provided	by	Cognex	may	be	covered	by	one	or
more	U.S.	and	foreign	patents,	as	well	as	pending	U.S.	and	foreign	patents	listed	on	the
Cognex	web	site	at:	https://www.cognex.com/patents.

The	following	are	registered	trademarks	of	Cognex	Corporation:

Cognex,	2DMAX,	Advantage,	AlignPlus,	Assemblyplus,	Check	it 	with	Checker,
Checker,	Cognex	Vision	f or	Indust ry,	Cognex	VSOC,	CVL,	DataMan,
DisplayInspect ,	DVT,	EasyBuilder,	Hotbars,	IDMax,	In-Sight ,	Laser	Killer,	MVS-
8000,	OmniView,	PatFind,	PatFlex,	Pat Inspect ,	PatMax,	PatQuick,
SensorView,	SmartView,	SmartAdvisor,	SmartLearn,	Ult raLight ,	Vision
Solut ions,	VisionPro,	VisionView

The	following	are	trademarks	of	Cognex	Corporation:

The	Cognex	logo,	1DMax,	3D-Locate,	3DMax,	BGAII,	CheckPoint ,	Cognex
VSoC,	CVC-1000,	FFD,	iLearn,	In-Sight 	(design	insignia	with	cross-hairs),	In-
Sight 	2000,	InspectEdge,	Inspect ion	Designer,	MVS,	NotchMax,	OCRMax,
PatMax	RedLine,	Proof Read,	SmartSync,	Prof ilePlus,	SmartDisplay,
SmartSystem,	SMD4,	VisiFlex,	Xpand

Other	product	and	company	trademarks	identified	herein	are	the	trademarks	of	their
respective	owners.

Barcode	Scanning	with	an	MX	Mobile	Terminal

The	SDK	supports	Cognex’s	line	of	MX	mobile	terminals,	including	the	MX-1000	and	MX-
1502	devices.	You	can	get	a	detailed	description	of	these	models	at	the	official	website
of	Cognex	(https://www.cognex.com).	Some	of	the	relevant	features	of	these	devices

https://www.cognex.com/patents
https://www.cognex.com/


t it le:	Cognex	Mobile	Barcode	SDK	for	iOS	(v2.0.x)	;	ver:	2.7.x 3	/	34

regarding	the	cmbSDK	usage	are	the	following:

Hardware	trigger:	MX	mobile	terminals	include	two	built-in	triggers	for	barcode
scanning,	and	support	an	optional	pistol	grip	with	trigger.
Illumination	and	aiming:	MX	mobile	terminals	have	built-in	illumination	and	aiming.
Stored	configurations:	An	MX	mobile	terminal	can	be	preconfigured	using	Cognex’s
DataMan	Setup	Tool	for	Windows,	the	Quick	Setup	mobile	application,	or	the	SDK	itself.
The	MX	mobile	terminal	can	save	and	restore	multiple	configuration	sets.
High-capacity	battery:	Each	MX	mobile	terminal	has	an	integrated	battery	that	not	only
powers	the	MX	scanning	engine,	but	also	provides	power	to	the	mobile	device.	The
optional	pistol	grip	includes	a	second	battery	that	doubles	the	MX’s	power	capacity.

The	following	features	of	the	MX	platform	combine	to	make	application	development	with
them	straightforward.

Ease	of	setup:	MX	mobile	terminals	come	preconfigured	to	provide	an	exceptional
out-of-the-box	experience.	In	many	cases,	it	is	not	even	necessary	to	change	the
defaults	of	the	device.	Also,	since	the	MX	mobile	terminals	have	saved	configurations
that	can	be	distributed	to	all	your	devices,	setup	is	usually	not	necessary	at	the
application	level.	Nevertheless,	it	is	often	desirable	to	put	the	device	in	a	“known”
state	when	the	barcode	scanning	application	starts,	so	the	cmbSDK	provides	methods
to	restore	the	device	defaults	as	well	as	to	control	individual	settings.
Having	illumination	and	aimer,	there	is	no	need	to	have	a	live	preview	on	the
smartphone’s	screen	like	traditional,	mobile	barcode	scanning	applications	often	do.
MX	mobile	terminals	do	not	even	support	a	“livestream”	decoding	mode.

Gett ing	your	MX	Mobile	Terminal	Enabled	App	into	the	App	Store

Before	submitting	your	MX-1000	Enabled	app	to	the	Apple	App	Store,	your	app	must	be
added	to	the	Cognex	MX-1000	MFi	product	plan.	This	is	a	critical	step	for	your	app	to	be
approved	by	Apple.	(If	your	app	isn’t	added	to	the	plan,	Apple	will	re ject	it.)

Please	submit	the	following	information	to	MX1000@cognex.com	for	each	iOS	app	you
plan	to	submit	to	the	App	Store.

Name	of	app	as	it	will	appear	in	App	Store
App	version	number
App	Store	category
Bundle	identifier
External	Accessory	protocols	(which	must	include	at	least	com.cognex.dmcc)
Brief	functional	overview	of	app	and	its	key	features
Name	of	the	developer	that	will	submit	the	app	to	the	App	Store
Expected	release	date

You	will	also	need	to	update	your	app’s	notes	before	submitting	to	the	App	Store.	Please
follow	the	instructions	to	do	this	below:

mailto:MX1000@cognex.com?subject=Enable%20App%20in%20MX%20product%20plan&body=Name%20of%20app%20as%20it%20will%20appear%20in%20App%20Store-%20App%20version%20number:-%20App%20Store%20category:-%20Bundle%20identifier:-%20External%20Accessory%20protocols%20(which%20must%20include%20at%20least%20com.cognex.dmcc):-%20Brief%20functional%20overview%20of%20app%20and%20its%20key%20features:-%20Name%20of%20the%20developer%20that%20will%20submit%20the%20app%20to%20the%20App%20Store:-%20Expected%20release%20date


t it le:	Cognex	Mobile	Barcode	SDK	for	iOS	(v2.0.x)	;	ver:	2.7.x 4	/	34

Log	in	to	iTunes	Connect
Click	on	"My	Apps"
Select	your	app
Click	on	the	app	version	on	the	left	side	of	the	screen
Scroll	down	to	"App	Review	Information"
Update	"Notes"	with:

The	related	product	plan	is:

Accessory	Name:	DataMan	9050

Product	Plan	ID:	144826-0004

Status:	Active	Type:	Manufacturing	Process

Phase:	Production

Click	"Save"
Once	you've	completed	all	changes,	click	the	"Submit	for	Review"	button	at	the	top	of
the	App	version	information	page.

Once	this	information	has	been	received,	Cognex	will	add	your	app	to	the	MX-1000
product	plan.	You	will	receive	an	email	confirmation	when	this	step	is	completed	at	which
time	you	can	submit	your	app	to	Apple	directly.

Debugging	on	MX	Mobile	Terminal

The	MX	Mobile	Terminals	connect	to	your	device	via	the	device's	usb	or	lightning	port.
This	means	that	the	port	will	be	occupied	while	your	application	is	running.	There	are
other	ways	to	debug	your	application	and	we	will	discuss	how	to	debug	via	wifi	below.

Debugging	on	iPhone	using	XCode:

Requirements:

XCode	9	or	newer
iPhone	running	iOS	11	or	newer

If	you	are	running	your	application	with	XCode,	you	need	to	enable	"Connect	via	network"
on	your	device.	To	do	that,	first	open	XCode	and	from	the	top	menu	choose	"Window"	and
then	"Devices	and	Simulators".	Make	sure	your	device	is	plugged	in	via	lightning	cable	at
this	point.	Select	your	device	from	the	"Connected"	list	of	devices	on	the	left	side,	and
check	the	"Connect	via	network"	checkbox.



t it le:	Cognex	Mobile	Barcode	SDK	for	iOS	(v2.0.x)	;	ver:	2.7.x 5	/	34

At	this	point,	you	can	close	the	Devices	window	and	you	can	run	your	application	without
using	the	lightning	cable.

Debugging	on	iPhone	using	Xamarin	or	Visual	Studio:

Make	sure	your	iPhone	is	connected	using	the	lightning	cable	and	open	your	Xamarin.IOS
project.	Go	to	your	project	options	by	right-clicking	project	and	choosing	"Options".
Navigate	to	iOS	Debug	from	the	left	menu,	and	check	the	"Debug	over	WiFi"	checkbox.
Launching	of	application	is	still	done	through	the	USB	cable,	so	the	initial	launch	will	still
require	you	to	have	the	cable	plugged.	But	once	started,	you	can	safely	unplug	and
continue	your	debugging	session	over	WiFi.

Barcode	Scanning	with	a	Smartphone	-	iOS

Barcode	Scanning	with	a	Smartphone

It	is	important	to	recognize	that	there	are	several	fundamental	differences	in	the
capabilities	of	smartphones	(and	tablets)	as	barcode	scanning	devices.	These	differences



t it le:	Cognex	Mobile	Barcode	SDK	for	iOS	(v2.0.x)	;	ver:	2.7.x 6	/	34

result	in	a	user	experience	different	from	purpose-built	scanners,	impacting	the	design	of
the	mobile	barcode	scanning	application.

These	differences	and	the	general	impact	they	have	on	your	application	are	the
following:

A	smartphone	does	not	have	a	dedicated	hardware	trigger.	Without	a	hardware
trigger,	the	application	program	itself	is	generally	responsible	for	initiating	the
scanning	process,	which	results	in	accessing	the	built-in	camera,	displaying	a	preview
screen	if	required,	and	analyzing	captured	frames	from	the	video	stream	for
barcodes.
A	smartphone	(unless	otherwise	configured)	does	not	have	an	aimer.	Generally,	the
application	program	provides	a	live-stream	camera	preview	on	the	mobile	device
screen,	thereby	allowing	the	user	to	see	what	the	camera	sees	and	can	then	position
the	device	over	the	barcode.
Mobile	device	orientation	may	need	to	be	considered.	Most	users	hold	and	use	a
mobile	device	primarily	in	a	portrait	orientation	and	for	barcode	scanning.	Having	the
camera	in	this	orientation	is	generally	sufficient.	However,	most	mobile	device
cameras	have	a	higher	resolution	along	their	landscape	orientation.	When	scanning
very	long	or	dense	barcodes,	reorienting	the	device	to	landscape	can	be	beneficial
and	even	necessary	to	decode	these	barcodes.
Image	analysis	and	barcode	decoding	is	performed	in	software	on	the	mobile	device
which	can	be	a	CPU	intensive	task.	For	this	reason	(and	others	discussed	later),	it	is
highly	recommended	to	only	enable	the	symbologies	and	features	of	the	SDK	your
application	will	need,	not	everything	the	cmbSDK	is	capable	of.

The	cmbSDK	has	been	specifically	engineered	to	make	these	differences	as	transparent
as	possible	to	the	application	developer	and	the	user.	By	following	a	few	simple
guidelines,	it	is	possible	to	develop	applications	that	work	and	behave	the	same,	whether
using	an	MX-1000	mobile	terminal,	or	just	the	built-in	camera	of	the	device.

Mobile	Device	Triggering

Without	a	hardware	trigger,	mobile	devices	must	use	alternative	methods	to	initiate
barcode	scanning.	There	are	three	common	paradigms	used:	

Applicat ion	or	workf low	driven	t rigger:	In	this	paradigm,	it	is	the	application
code	itself,	or	the	business	logic/workflow	of	the	application	that	starts	the	scanning
process.	In	other	words,	the	user	of	the	application	has	reached	a	point	where	a
barcode	needs	to	be	scanned,	so	the	application	invokes	the	scanning	module.	In
simple	programming	terms,	this	is	akin	to	calling	a	function	like	"startScanner()".	
Virtual	t rigger:	This	is	where	the	application	program	provides	a	button	on	the
screen	whereby	the	user	can	use	to	start/stop	the	scanning	process.	Depending	on
the	application	design,	the	user	may	be	required	to	press	and	hold	the	virtual	button
to	keep	the	scanner	running.	This	method	is	similar	to	the	workflow	driven	method	as
the	button	from	the	user	interface	is	merely	being	used	to	invoke	the	scanning
module.	
Simulated	t rigger:	For	this	method,	one	of	the	buttons	on	the	mobile	device,



t it le:	Cognex	Mobile	Barcode	SDK	for	iOS	(v2.0.x)	;	ver:	2.7.x 7	/	34

typically	the	volume-down	button,	is	used	to	simulate	a	hardware	trigger.	When	the
user	presses	and	holds	this	button,	the	scanner	starts/stops	just	like	when	a	trigger	is
pulled	on	a	purpose-built	scanner.	This	method	is	not	commonly	used	as	users	find	it
non-	intuitive	and	inconvenient	to	use	the	volume	key	in	this	fashion.	

The	cmbSDK	supports	all	three	of	these	methods,	any	one	of	which	(or	multiple)	can	be
used	in	an	application.		

Mobile	Device	Aiming

As	previously	discussed,	unlike	like	purpose-built	scanners,	mobile	devices	do	not	have	a
built-in	aimer.	Barcode	aimingis	generally	accomplished	by	providing	a	live-stream
preview	from	the	camera	on	the	mobile	device	display:	the	user	can	then	reposition	the
device	until	the	barcode	presents	in	the	fie ld	of	view	and	is	decoded.This	task	is	greatly
simplified	with	the	cmbSDK	as	it	provides	a	built-in	preview	control	that	can	be	displayed
full-screen,partial	screen,	and	in	either	portrait	or	landscape	orientation.The	cmbSDK	also
supports	"passive"	aimers:	devices	that	attach	to	the	mobile	device	or	mobile	device
case	that	use	theLED	flash	of	the	device	as	a	light	source	to	project	an	aiming/targeting
pattern.	The	advantage	to	these	types	of	aimers	isthat	an	on-screen	preview	is	no	longer
required	(since	the	mobile	device	can	now	project	an	aimer	pattern	similar	to	apurpose-
built	scanner).	One	limitation	of	passive	aimers,	though,	is	that	since	the	mobile	device
flash	is	being	used	forthe	aimer,	using	the	LED	flash	for	general	scanning	illumination	is
not	available.

Mobile	Device	Orientat ion

Mobile	devices	support	developing	applications	for	e ither	portrait	orientation,	landscape
orientation,	or	auto-rotation	between	the	two.	The	cmbSDK	fully	supports	all	three	options
for	both	the	presentation	of	the	barcode	preview	as	well	as	the	scan	direction.	As
mentioned	previously,	most	barcodes	can	be	scanned	by	a	mobile	device	regardless	of
the	orientation	of	the	application	and/or	mobile	device.

In	some	circumstances,	though,	using	landscape	orientation	may	be	advantageous	or
even	necessary.	Mobile	cameras	have	a	higher	resolution	along	the	"height"	of	the
image	in	portrait	mode.	For	example,	a	common	resolution	used	is	1280x720.	When
scanning	barcodes	in	portrait	mode,	this	means	that	720	pixels	of	data	are	available	for
barcode	decoding	along	the	horizontal	axis.	If	scanning	a	particularly	long	or	dense
barcode	(e.g.	a	large	PDF417),	using	the	landscape	orientation	provides	1280	pixels	on
the	horizontal	scan	line.	Orientation	makes	little 	to	no	difference	when	scanning	"square"
barcodes	like	QR,	Data	Matrix,	and	MaxiCode.	

Mobile	Device	Performance

Today's	smartphones	and	tablets	have	significant	computing	power.	With	multi-core	CPUs
and	even	dedicated	image	processors,	they	provide	an	ideal	platform	for	cost-effective



t it le:	Cognex	Mobile	Barcode	SDK	for	iOS	(v2.0.x)	;	ver:	2.7.x 8	/	34

and	efficient	barcode	decoding.	As	powerful	as	these	devices	are,	developers	are	still
advised	to	consider	optimizing	their	barcode	scanning	applications.	While	the	SDK	has
been	optimized	specifically	for	mobile	environments,	image	analysis	and	barcode
decoding	is	still	a	CPU	intensive	activity:	and	since	these	processes	must	share	the
mobile	device	CPU	with	the	operating	system,	services,	and	other	applications,
developers	should	limit	their	applications	to	only	using	the	features	of	the	SDK	that
satisfy	their	needs.

Application	optimizations	include	the	following:	

Only	enable	decoding	for	the	barcode	types	the	application	needs	to	scan.The
cmbSDK	supports	the	decoding	of	almost	40	different	barcode	types	and	subtypes,
and	while	you	can	enable	all	of	these,	it	can	negatively	impact	performance	as	well
as	introduce	unwanted	side	effects:	
	The	more	symbologies	enabled,	the	slower	the	performance.	This	can	lead	to
sluggish	decoding	and	the	degradation	of	the	overall	performance	of	the	mobile
device,	leaving	the	user	with	an	inaccurate	impression	of	the	SDK’s	capabilitie .
	False	reads	are	possible.	This	is	particularly	possible	when	some	of	the	weaker
symbologies,	like	Code	25,	are	enabled	without	proper	consideration	and	configuration
of	other,	more	advanced	features	like	minimum	code	length	and	barcode	location.
These	features	help	mitigate	false	reads	with	the	weak	symbologies,	but	at	a	cost	of
degraded	performance	(and	again,	are	not	intended	to	all	be	turned	on	and	used	at
the	same	time).	
Using	an	optimal	camera	resolution.	By	default,	the	cmbSDK	uses	HD	images
(typically	1280x720	)	for	barcode	decoding.	This	resolution	is	sufficient	for	all	but	the
very	smallest	or	dense	of	barcodes.	As	the	application	developer,	you	can	use	a
higher	resolution	(full	HD),	but	keep	in	mind	that	these	images	are	significantly	larger,
so	they	will	require	more	time	to	analyze	and	decode.		
Using	an	appropriate	decoder	effort	level.	The	SDK	has	a	user-configurable	effort-
level	that	control	show	aggressively	the	SDK	performs	image	analysis.	Like	most
other	settings,	the	SDK	uses	a	default	value	(level	2)	that	is	sufficient	for	almost	all
barcodes.	Using	a	higher	level	can	result	in	better	decoding	of	poorer	quality
barcodes,	but	at	the	price	of	slower	performance.	

For	these	reasons,	when	the	cmbSDK	is	initialized	for	use	with	the	built-in	camera	of	the
mobile	device,	no	barcode	symbologies	are	enabled	by	default:	the	application	must
explicitly	enable	the	symbologies	it	needs.	As	most	barcode	scanning	applications	only
truly	need	to	scan	a	handful	of	symbologies,	this	behavior	steers	the	developer	to	using
the	SDK	in	an	efficient	manner.

Enabling	symbologies	is	a	very	simple	process,	which	is	explained	later	in	this	document.	

	

cmbSDK	for	iOS

Gett ing	Started



t it le:	Cognex	Mobile	Barcode	SDK	for	iOS	(v2.0.x)	;	ver:	2.7.x 9	/	34

Perform	the	following	steps	to	install	the	iOS	cmbSDK:

1.	 Download	the	latest	XCode	for	iOS	Development.

2.	 Download	the	Cognex	Mobile	Barcode	SDK	for	iOS.	

Using	the	SDK	in	XCode

Perform	the	following	steps	to	set	up	your	application	to	use	the	iOS	cmbSDK:

1.	 Open	XCode	and	start	a	new	project.

2.	 Add	the	following	lib	and	frameworks	to	your	project:	

*	SystemConfiguration.framework	*	AVFoundation.framework
*	CoreGraphics.framework
*	CoreMedia.framework
*	CoreVideo.framework
*	MediaPlayer.framework	*	Security.framework
*	AudioToolbox.framework	*	libDataManSDK.a

			3.		Go	to	your	project's	Inf o.plist 	file 	and	add	the	Privacy	-	Camera	Usage	Description
or	NSCameraUsageDescription.	This	is	required	by	iOS	and	is	used	to	display	a	message
explaining	the	usage	of	the	user's	device	camera	by	your	application.	

	

Licensing	the	SDK

If	you	plan	to	use	the	cmbSDK	to	do	mobile	scanning	with	a	smartphone	or	tablet	(with	no
MX	mobile	terminal),	then	the	SDK	requires	the	installation	of	a	license	key.

Without	a	license	key,	the	SDK	will	still	operate,	although	scanned	results	will	be
obfuscated	(the	SDK	will	randomly	replace	characters	in	the	scan	result	with	an	asterisk
character).

Contact	your	Cognex	Sales	Representative	for	information	on	how	to	obtain	a	license	key
including	trial	licenses	which	can	be	used	for	30	days	to	evaluate	the	SDK.

After	obtaining	your	license	key,	add	it	as	a	String	in	your	application's	Info.plist	file ,	under
the	key	MX_MOBILE_LICENSE.

https://itunes.apple.com/us/app/xcode/id497799835


t it le:	Cognex	Mobile	Barcode	SDK	for	iOS	(v2.0.x)	;	ver:	2.7.x 10	/	34

Writ ing	a	Mobile	Applicat ion

The	cmbSDK	has	been	designed	to	provide	a	high-level,	abstract	interface	for	supported
scanning	devices.	This	includes	not	only	the	MX	series	of	mobile	terminals,	but	also	for
applications	that	intend	to	use	the	mobile	device	camera	as	the	imaging	device.	The
intricacies	of	communicating	with	and	managing	these	devices	is	encapsulated	within	the
SDK	itself:	leaving	the	application	to	just	connect	to	the	device	of	choice,	then	using	it.

The	primary	interface	between	your	application	and	a	supported	barcode	scanning	device
is	the	CMBReaderDevice	class.	This	class	represents	the	abstraction	layer	to	the	device
itself,	handling	all	communication	as	well	as	any	necessary	hardware	management	(e.g.,
for	smartphone	scanning).

Perform	the	following	steps	to	use	the	cmbSDK:	

1.	 Initialize	a	Reader	Device	for	the	type	of	device	you	want	to	use	(MX	reader	or
camera	reader).

2.	 Connect	the	Reader	Device.

3.	 Configure	the	reader	(if	necessary).

4.	 Start	scanning.	

Initialization,	connection,	and	configuration	generally	need	to	be	performed	only	once	in
your	application,	except	for	the	following	cases:

An	MX	reader	can	become	disconnected	(times	out	from	disuse,dead	battery,etc.).	A
method	has	been	provided	to	handle	this	case,	and	is	discussed	in	a	later	section.



t it le:	Cognex	Mobile	Barcode	SDK	for	iOS	(v2.0.x)	;	ver:	2.7.x 11	/	34

Your	application	has	been	designed	to	allow	the	user	to	change	devices.The	cmbSDK
is	explicitly	designed	to	support	this:	your	application	simply	disconnects	from	the
current	device	and	establishes	a	new	connection	to	a	different	device.	The	provided
sample	application	has	been	written	to	explicitly	demonstrate	this	capability.	

	

Init ializing	a	Reader	Device

The	cmbSDK	provides	two	different	reader	class	initializers:	one	for	scanning	using	an	MX
mobile	terminal	(like	the	MX-	1000	or	MX-1502)	and	another	for	scanning	using	the	built-in
camera	of	the	mobile	device	(iPhones,	iPads,	etc).	

Using	the	MX-1xxx	Reader

Initializ ing	the	Reader	Device	for	use	with	an	MX	mobile	terminal	like	the	MX-1000	or	MX-
1502	is	easy:	simply	create	the	reader	device	using	the	MX	device	method	(it	requires
no	parameters),	and	set	the	appropriate	delegate	(normally	self):	

CMBReaderDevice	*readerDevice	=	[CMBReaderDevice	readerOfMXDevice];
[readerDevice	setDelegate:self];

The	availability	of	the	MX	mobile	terminal	can	change	when	the	device	turns	ON	or	OFF,
or	if	the	lightning	cable	gets	connected	or	disconnected.	You	can	handle	those	changes
using	the	following	CMBReaderDeviceDelegate	method.	

-	(void)availabilityDidChangeOfReader:(CMBReaderDevice	*)reader;

	

Using	the	Camera	Reader

Barcode	scanning	with	the	built-in	camera	of	the	mobile	device	can	be	more	complex
than	with	an	MX	mobile	terminal.	The	cmbSDK	supports	several	configurations	to	provide
the	maximum	flexibility.	This	includes	support	of	optional,	external	aimers/illumination,	as
well	as	the	ability	to	customize	the	appearance	of	the	live-stream	preview.

To	scan	barcodes	using	the	built-in	camera	of	the	mobile	device,	initialize	the
CMBReaderDevice	object	using	the	readerOfDeviceCameraWithCameraMode	static



t it le:	Cognex	Mobile	Barcode	SDK	for	iOS	(v2.0.x)	;	ver:	2.7.x 12	/	34

method.	The	camera	reader	has	several	options	when	initialized.	The	following
parameters	are	required:	

*	CDMCameraMode
*	CDMPreviewOption
*	UIView

The	CameraMode	parameter	is	of	the	type	CDMCameraMode	(defined	in
CDMDataManSystem.h),	and	it	accepts	one	of	the	following	values:	

kCDMCameraModeNoAimer:	This	initializes	the	reader	to	use	a	live-stream
preview	(	on	the	mobile	device	screen	)	so	the	user	can	position	the	barcode	within
the	camera’s	fie ld	of	view	for	detection	and	decoding.	Use	this	mode	when	the
mobile	device	does	not	have	an	aiming	accessory.
kCDMCameraModePassiveAimer:	This	initializes	the	reader	to	use	a	passive
aimer	,	which	is	anaccessory	that	is	attached	to	the	mobile	device	or	mobile	device
case	that	uses	the	built-in	LED	flash	of	the	mobile	device	as	a	light	source	for
projecting	an	aiming	pattern.	In	this	mode,	no	live-stream	preview	is	presented	on	the
device	screen,	since	an	aiming	pattern	will	be	projected.
kCDMCameraModeFrontCamera:	This	initializes	the	reader	to	use	the	front	facing
camera	of	the	mobile	device,	if	available	(not	all	mobile	devices	have	a	front
camera).	This	is	an	unusual,	but	possible	configuration.	Most	front-facing	cameras	do
not	have	auto	focus	and	illumination,	and	provide	significantly	lower	resolution
images.	This	option	should	be	used	with	care.	In	this	mode,	illumination	is	not
available.	

All	of	the	above	modes	provide	the	following	default	settings	for	the	reader:

The	rear	camera	is	used.
The	zoom	feature	isa	vailable	and	a	button	to	control	it	is	visible	on	the	live-streamp
review	(	if	displayed	).
The	simulated	hardware	trigger	is	disabled.
When	startScanning()	is	called,	the	decoding	process	is	started.	(	Seek
CDMPreviewOptionPaused	for	more	details.)

Based	on	the	selected	mode,	the	following	additional	options	and	behaviors	are	set:	

kCDMCameraModeNoAimer	(	NoAimer	)
The	live-stream	preview	is	displayed	when	the	startScanning()	method	is	called.
Illumination	is	available	and	a	button	to	control	it	is	visible	on	the	live-stream	preview.
If	commands	are	sent	to	the	reader	for	aimer	control,	they	will	be	ignored.

	

kCDMCameraModePassiveAimer(	PassiveAimer	)
The	live-stream	preview	will	not	be	displayed	when	the	startScanning()	method	is
called.



t it le:	Cognex	Mobile	Barcode	SDK	for	iOS	(v2.0.x)	;	ver:	2.7.x 13	/	34

Illumination	is	not	available	and	the	live-stream	preview	will	not	have	an	illumination
button.
If	commands	are	sent	to	the	reader	for	illumination	control,	they	will	be	ignored,	since
it	is	assumed	in	this	mode	that	the	built-in	LED	of	the	mobile	device	is	being	used	for
the	aimer.

	

kCDMCameraModeFrontCamera(	FrontCamera	)
The	live-stream	preview	is	displayed	when	the	startScanning()	method	is	called.
The	front	camera	is	used.
Illumination	is	not	available,	and	the	live-stream	preview	will	not	have	an	illumination
button.	o	If	commands	are	sent	to	the	reader	for	aimer	or	illumination	control,	they	will
be	ignored.	

	

The	previewOptions	parameter	(of	type	CDMPreviewOption,	defined	in
CDMDataManSystem.h)	is	used	to	change	the	reader’s	default	values	or	override
defaults	derived	from	the	selected	CameraMode.	Multiple	options	can	be	specified	by
OR-ing	them	when	passing	the	parameter.	The	available	options	are	the	following:	

	

kCDMPreviewOpt ionDef ault s:	Use	this	option	to	accept	all	defaults	set	by	the
CameraMode.
kCDMPreviewOpt ionNoZoomBtn:	This	option	hides	the	zoom	button	on	the	live-
stream	preview,	preventing	a	user	from	adjusting	the	zoom	of	the	mobile	device
camera.
kCDMPreviewOpt ionNoIllumBtn:	This	hides	the	illumination	button	on	the	live-
stream	preview,	preventing	a	user	from	toggling	the	illumination.
kCDMPreviewOpt ionHwTrigger:	This	enables	a	simulated	hardware	trigger	(the
volume	down	button	)for	starting	scanning	on	the	mobile	device.	This	button	only
starts	scanning	when	pressed.	It	does	not	need	to	be	held	like	a	more	traditional
purpose-built	scanner’s	trigger.	Pressing	the	button	a	second	time	does	not	stop	the
scanning	process.
kCDMPreviewOpt ionPaused:	If	using	a	live-stream	preview,	when	this	option	is
set,	the	preview	will	be	displayed	when	the	startScanning()	method	is	called,	but	the
reader	will	not	start	decoding	(i.e.	looking	for	barcodes)	until	the	user	presses	the	on-
screen	scanning	button	to	actually	start	the	scanning	process.
kCDMPreviewOpt ionAlwaysShow:	This	forces	alive-stream	preview	to	be
displayed,	even	if	an	aiming	mode	has	been	selected	(e.g.	CameraMode	==
kCDMCameraModePassiveAimer	)	

The	last	parameter	of	type	UIView	is	optional	and	is	used	as	a	container	for	the	camera
preview.	If	the	parameter	is	left	nil,	a	full	screen	preview	will	be	used.

Examples:

Create	a	reader	with	no	aimer	and	a	full	screen	live-stream	preview:	



t it le:	Cognex	Mobile	Barcode	SDK	for	iOS	(v2.0.x)	;	ver:	2.7.x 14	/	34

CMBReaderDevice	*readerDevice	=	[CMBReaderDevice	readerOfDeviceCameraWithCameraMode:kCDMCameraModeNo
Aimer	previewOptions:kCDMPreviewOptionDefaults	previewView:nil];
readerDevice.delegate	=	self;

Create	a	reader	with	no	aimer,	no	zoom	button,	and	using	a	simulated	trigger:	

CMBReaderDevice	*readerDevice	=	[CMBReaderDevice	readerOfDeviceCameraWithCameraMode:kCDMCameraModeNo
Aimer	previewOptions:(kCDMPreviewOptionNoZoomBtn	|	kCDMPreviewOptionHwTrigger)	previewView:nil];
readerDevice.delegate	=	self;

	

Connect ing	to	the	Device

After	initializ ing	the	Reader	Device	and	setting	a	delegate	to	handle	responses	from	the
reader,	you	are	ready	to	connect	using	connectWithCompletion:	

//	Make	sure	the	device	is	turned	ON	and	ready
if	(readerDevice.availability	==	CMBReaderAvailibilityAvailable)	{
//	create	the	connection	between	the	readerDevice	object	and	device	[readerDevice	connectWithComplet
ion:^(NSError	*error)	{
if	(readerDevice.connectionState	==	CMBConnectionStateConnected)	{	//	Connected	successfully
}	else	{
if	(error)	{
//	handle	connection	error	}
}	}];
}

If	everything	was	done	correctly,	connectionStateDidChangeOfReader	in	the	delegate	will
be	called,	where	you	can	check	the	connection	status	in	your	Reader	Device's
connectionState	parameter.	It	should	be	CMBConnectionStateConnected,	which	means
that	you	have	successfully	made	the	connection	to	the	Reader	Device,	and	can	begin
using	the	Cognex	Mobile	Barcode	SDK.	

Configuring	the	Reader	Device

After	connecting	to	the	scanning	device,	you	may	want	(or	need)	to	change	some	of	its
settings.	The	cmbSDK	provides	a	set	of	high-level,	device	independent	APIs	for	setting
and	retrieving	the	current	configuration	of	the	device.

Like	in	the	case	of	initializ ing	the	Reader	Device,	there	are	some	differences	between
using	an	MX	reader	and	the	camera	reader	for	scanning.	These	differences	are	detailed



t it le:	Cognex	Mobile	Barcode	SDK	for	iOS	(v2.0.x)	;	ver:	2.7.x 15	/	34

in	the	following	sections.	

MX	Mobile	Terminals

The	MX	family	of	mobile	terminals	provides	sophisticated	device	configuration	and
management,	including	saved	configurations	on	the	device	itself.	In	general,	these
devices	come	from	Cognex	preconfigured	for	an	exceptional	out-of-	the-box	experience
with	most	symbologies	and	features	ready	to	use.

When	custom	reconfiguration	is	desired,	this	is	typically	done	using	either	the	DataMan
Setup	Tool,	or	the	DataMan	Quick	Setup	as	these	tools	can	be	used	to	distribute	saved
configurations	easily	to	multiple	devices,	thereby	greatly	simplifying	configuration
management.

However,	it	is	still	possible	(and	sometimes	desirable)	for	the	mobile	application	itself	to
configure	the	MX	device:	

You	can	have	multiple	scanning	applications,	each	of	which	requiresa	different	set	of
device	settings.
You	may	simply	want	to	guarantee	that	the	certain	options	are	in	a	“known”	state	and
not	rely	on	the	fact	that	the	device	has	been	preconfigured	correctly.	

Built -in	Camera

Much	like	an	MX	mobile	terminal,	the	cmbSDK	employs	a	default	set	of	options	for
barcode	reading	with	the	built-in	camera	of	the	mobile	device,	providing	a	good	out-of-
box	experience.	However,	there	are	two	important	differences	to	keep	in	mind:

The	cmbSDK	does	not	implement	saved	configurations	for	the	camera	reader.	This
means	that	every	time	an	application	that	uses	the	camera	reader	starts,	it	starts	with
its	defaults.
The	cmbSDK	does	not	enable	any	symbologies	by	default:	you	as	the	application
programmer	must	enable	all	barcode	symbologies	your	application	needs	to	scan.	By
requiring	the	application	program	to	explicitly	enable	only	the	symbologies	it	needs,
the	most	optimal	scanning	performance	can	be	achieved.	This	concept	was	more
thoroughly	discussed	in	the	Overview	section.	

Enabling	Symbologies

Individual	symbologies	can	be	enabled	using	the	following	method	of	the	Reader	Device
object:	

https://cmbdn.cognex.com/wiki/-cognex-mobile-barcode-sdk-for-ios/overview


t it le:	Cognex	Mobile	Barcode	SDK	for	iOS	(v2.0.x)	;	ver:	2.7.x 16	/	34

-(void)	setSymbology:(CMBSymbology)symbology	
enabled:(bool)enabled
completion:(void	(^)(NSError	*error))completionBlock;

All	symbologies	used	for	the	symbology	parameter	in	this	method	can	be	found	in
CMBReaderDevice.h.

Examples	

/*	Enable	QR	scanning	*/
[readerDevice	setSymbology:CMBSymbologyQR
enabled:YES	completion:^(NSError	*error)	{	if	(!error)	{
//	Success	}else{
/*	Unsuccessful
probably	the	symbology	is	unsupported	by
the	current	device,	or	there	is	a	problem	with	the	connection	between
the	readerDevice	and	MX	device
*/
}	}];

The	same	method	can	also	be	used	to	turn	symbologies	off:	

/*	Disable	Code	25	scanning	*/	[readerDevice	setSymbology:CMBSymbologyC25
enabled:NO	completion:^(NSError	*error)	{	if	(!error)	{
//	Success	}else{
//	Unsuccessful	}
}];

	

Illuminat ion	Control

If	your	reader	device	is	equipped	with	illumination	lights	(e.g.	LEDs),	you	can	control
whether	they	are	ON	or	OFF	when	scanning	starts	using	the	following	method	of	your
Reader	Device	object:	

-(void)	setLightsON:(bool)on
completion:(void	(^)(NSError	*error))completionBlock;

Keep	in	mind	that	not	all	devices	and	device	modes	supported	by	the	cmbSDK	allow	for
illumination	control.	For	example,	if	using	the	built-in	camera	in	passive	aimer	mode,
illumination	is	not	available	since	the	LED	is	being	used	for	aiming.	



t it le:	Cognex	Mobile	Barcode	SDK	for	iOS	(v2.0.x)	;	ver:	2.7.x 17	/	34

Resett ing	the	Configurat ion

The	cmbSDK	includes	a	method	for	resetting	the	device	to	its	default	settings.	In	the
case	of	an	MX	mobile	terminal,	this	is	the	configuration	saved	by	default	(not	the	factory
defaults),	while	in	the	case	of	the	built-in	camera,	these	are	the	defaults	identified	in
Appendix	B,	where	no	symbologies	will	be	enabled.	This	method	is	the	following:	

-	(void)	resetConfigWithCompletion:(void	(^)(NSError	*error))completionBlock;

	

Advanced	Configurat ion

Every	Cognex	scanning	device	implements	DataMan	Control	Commands	(DMCC),	a
method	for	configuring	and	controlling	the	device.	Virtually	every	feature	of	the	device
can	be	controlled	using	this	text	based	language.	The	API	provides	a	method	for	sending
DMCC	commands	to	the	device.	Commands	exist	both	for	setting	and	querying
configuration	properties.

Appendix	A	includes	the	complete	DMCC	reference	for	use	with	the	camera	reader.
DMCC	commands	for	other

supported	devices	(e.g.	the	MX-1000)	are	included	with	the	documentation	of	that
particular	device.
Appendix	B	provides	the	default	values	for	the	camera	reader’s	configuration	settings
as	related	to	the	corresponding

DMCC	setting.
The	following	examples	show	different	DMCC	commands	being	sent	to	the	device	for
more	advanced	configuration.	Change	the	scan	direction	to	omnidirectional:	

[self.dataManSystem	sendCommand:@"DECODER.1D-SYMBOLORIENTATION	0"	withCallback:^(CDMResponse	*respon
se){
if	(response.status	==	DMCC_STATUS_NO_ERROR)	{...}
else
{...}	}];

Change	the	scanning	timeout	of	the	live-stream	preview	to	10	seconds:	



t it le:	Cognex	Mobile	Barcode	SDK	for	iOS	(v2.0.x)	;	ver:	2.7.x 18	/	34

[self.dataManSystem	sendCommand:@"DECODER.MAX-SCAN-TIMEOUT	10"	withCallback:^(CDMResponse	*response)
{
if	(response.status	==	DMCC_STATUS_NO_ERROR)	{...}
else
{...}	}];

Get	the	type	of	the	connected	device:	

[self.dataManSystem	sendCommand:@"GET	DEVICE.TYPE"	withCallback:^(CDMResponse	*response){
if	(response.status	==	DMCC_STATUS_NO_ERROR)	{NSString	*deviceType	=	response.payload;	}
else
{...}	}];

	

Scanning	Barcodes

With	a	properly	configured	reader,	you	are	now	ready	to	scan	barcodes.	This	is	simply
accomplished	by	calling	the	startScanning()	method	from	your	Reader	Device	object.
What	happens	next	is	based	on	the	type	of	Reader	Device	and	how	it	has	been
configured,	but	in	general:	

If	using	an	MXreader,	the	user	can	now	press	a	trigger	button	on	the	device	to	turn
the	scanner	on	and	read	a	barcode.
If	using	the	camera	reader,	the	cmbSDK	starts	the	camera,	displays	the	configured
live-stream	preview,and	begins	analyzing	the	frames	from	the	video	stream,	looking
for	a	configured	barcode	symbology.	

Scanning	stops	under	one	of	the	following	conditions:	

The	reader	found	and	decodeda	barcode.
The	user	released	the	trigger	or	pressed	the	stop	button	on	the	live-stream	preview
screen.
The	camera	reader	timed	out	with	out	finding	a	barcode.
The	application	program	itself	calls	the	stopScanning()	method.	

When	a	barcode	is	decoded	successfully	(the	first	case),	you	will	receive	a
CMBReadResults	array	in	your	Reader	Device's	delegate	using	the	following
CMBReaderDeviceDelegate	method:	

-	(void)didReceiveReadResultFromReader:(CMBReaderDevice	*)reader	results:(CMBReadResults	*)readResul
ts;



t it le:	Cognex	Mobile	Barcode	SDK	for	iOS	(v2.0.x)	;	ver:	2.7.x 19	/	34

	The	following	is	an	example	to	simply	display	a	ReadResult	after	scanning	a	barcode:	

-	(void)didReceiveReadResultFromReader:(CMBReaderDevice	*)reader	results:(CMBReadResults	*)readResul
ts
{
for	(CMBReadResult	*readResult	in	readResults.readResults)	{
if	(readResult.image)	{
_ivPreview.image	=	readResult.image;	}
if	(readResult.readString)	{
_lblCode.text	=	readResult.readString;	}
}	
}

In	the	example	above,	_ivPreview	is	an	UIImageView	used	to	display	an	image	of	the
barcode	that	was	scanned,	and	_	lblCode	is	a	UILabel	used	to	show	the	result	from	the
barcode.	You	can	also	use	the	BOOL	from	readResult.goodRead	to	check	whether	the
scan	was	successful	or	not.	

Working	with	Results

When	a	barcode	is	successfully	read,	a	CMBReadResult	object	is	created	and	returned	by
the	didReceiveReadResultFromReader:results:	method.	In	case	of	having	multiple
barcodes	successfully	read	on	a	single	image/frame,	multiple	CMBReadResult	objects	are
returned.	This	is	why	the	CMBReadResults	class	has	an	array	of	CMBReadResult	objects
containing	all	results.

The	CMBReadResult	class	has	properties	describing	the	result	of	a	barcode	read:

goodRead	(BOOL):	te lls	whether	the	read	was	successful	or	not
readSt ring	(NSString):	the	decoded	barcode	as	a	string
image	(UIImage):	the	image/frame	that	the	decoder	has	processed
imageGraphics	(NSData):	the	boundary	path	of	the	barcodeas	SVG	data
XML	(NSData):	the	raw	XML	that	the	decoder	returned
symbology	(CMBSymbology):	the	symbology	type	of	the	barcode.This	enum	is
defined	in	CMBReaderDevice.h.

When	a	scanning	ends	with	no	successful	read,	a	CMBReadResult	is	returned	with	the
goodRead	property	set	to	false.	This	usually	happens	when	scanning	is	canceled	or	timed
out.

To	enable	the	image	and	imageGraphics	properties	being	filled	in	the	CMBReadResult
object,	you	have	to	set	the	corresponding	imageResultEnabled	and/or	SVGResultEnabled
properties	of	the	CMBReaderDevice	object.

To	see	an	example	on	how	the	image	and	SVG	graphics	are	used	and	displayed	in
paralle l,	refer	to	the	sample	applications	provided	in	the	SDK	package.



t it le:	Cognex	Mobile	Barcode	SDK	for	iOS	(v2.0.x)	;	ver:	2.7.x 20	/	34

To	access	the	raw	bytes	from	the	scanned	barcode,	you	can	use	the	XML	property.	The
bytes	are	stored	as	a	Base64	String	under	the	"full_string"	tag.	Here's	an	example	how
you	can	use	a	XML	parser	to	extract	the	raw	bytes	from	the	XML	property.

NSXMLParser	*xmlParser	=	[NSXMLParser.alloc	initWithData:result.XML];
xmlParser.delegate	=	self;
if	([xmlParser	parse])	{
				//	the	raw	bytes	will	be	stored	in	this	variable
				NSData	*bytes	=	[NSData.alloc	initWithBase64EncodedString:base64String	options:0];
}

Parsing	the	XML	and	extracting	the	Base64	String	is	done	using	the	NSXMLParser
Delegate	delegate.	Add	this	delegate	and	the	following	methods	from	it	in	your
ViewController:

#pragma	NSXMLParserDelegate
NSString	*currentElement;
NSString	*base64String;
-	(void)parser:(NSXMLParser	*)parser	didStartElement:(NSString	*)elementName	namespaceURI:(NSString	
*)namespaceURI	qualifiedName:(NSString	*)qName	attributes:(NSDictionary<NSString	*,NSString	*>	*)att
ributeDict	{
				currentElement	=	elementName;
}

-	(void)parser:(NSXMLParser	*)parser	foundCharacters:(NSString	*)string	{
				if	([currentElement	isEqualToString:@"full_string"])	{
								base64String	=	string;
				}
}

Image	Results

By	default,	the	image	and	SVG	results	are	disabled,	which	means	that	when	scanning,
the	CMBReadResults	will	not	contain	any	data	in	the	corresponding	properties.

To	enable	image	results,	set	the	imageResultEnabled	property	from	the
CMBReaderDevice	class	by	using	the	following	method:	

[readerDevice	setImageResultEnabled:YES];

To	enable	SVG	results,	set	the	imageResultEnabled	property	from	the	CMBReaderDevice
class	by	using	the	following	method:	



t it le:	Cognex	Mobile	Barcode	SDK	for	iOS	(v2.0.x)	;	ver:	2.7.x 21	/	34

[readerDevice	setSVGResultEnabled:YES];

	

Handling	Disconnects

1.	Disconnects:

There	may	be	cases	when	a	device	disconnects	due	to	low	battery	condition	or	manual
cable	disconnection.	These	cases	can	be	detected	by	the
connectionStateDidChangeOfReader	callback	of	the	CMBReaderDeviceDelegate.

Note:	The	availabilityDidChangeOfReader	method	is	also	called	when	the	device
becomes	physically	unavailable.	It	means	that	the	(re)connection	is	not	possible.
Always	check	the	availability	property	of	the	CMBReaderDevice	object	before	trying
to	call	the	connectWithCompletion	method.

2.	Re-Connection:

After	you	return	to	your	application	from	inactive	state,	the	reader	device	remains
initialized,	but	not	connected.	This	means	there	is	no	need	for	re initializ ing	the	SDK,	but
you	will	need	to	re-connect.

Some	iOS	versions	will	send	a	"Availability"	notification	when	resuming	the	application
that	the	External	Accessory	is	available.	You	can	use	this	in	the
CMBReaderDeviceDelegate's	method:	(void)availabilityDidChangeOfReader:
(CMBReaderDevice	*)reader.	In	it,	when	the	reader	becomes	available,	you	can	connect
to	it.

For	example:

-	(void)availabilityDidChangeOfReader:(CMBReaderDevice	*)reader
{
				if	(readerDevice.availability	==	CMBReaderAvailibilityAvailable)	{
								[readerDevice	connectWithCompletion:^(NSError	*error)	{
												if	(error)	{
															//	handle	connection	error
												}
								}];
				}
}



t it le:	Cognex	Mobile	Barcode	SDK	for	iOS	(v2.0.x)	;	ver:	2.7.x 22	/	34

Some	iOS	versions	do	not	report	availability	change	on	resume,	so	you	will	have	to
handle	this	manually.	For	this,	you	will	have	to	add	an	observer	for
"UIApplicationDidBecomeActiveNotification"	and	do	some	checks	before	connecting,	so
you	don't	connect	while	the	reader	is	already	in	"connecting"	or	"connected"	state.	For
example:

-	(void)viewDidLoad	{
					//	add	observer	for	app	resume
					[[NSNotificationCenter	defaultCenter]	addObserver:self
																																																	selector:@selector(appBecameActive)
																																																					name:UIApplicationDidBecomeActiveNotification	o
bject:nil];
}
//	handle	app	resume
-(void)	appBecameActive	{
				if	(readerDevice	!=	nil
								&&	readerDevice.availability	==	CMBReaderAvailibilityAvailable
								&&	readerDevice.connectionState	!=	CMBConnectionStateConnecting	&&	readerDevice.connectionSt
ate	!=	CMBConnectionStateConnected)
				{
								[readerDevice	connectWithCompletion:^(NSError	*error)	{
												if	(error)	{
																//	handle	connection	error
												}
								}];
				}
}

Appendix	A	-	DMCC	for	the	Camera	Reader	-	iOS

Appendix	A	-	DMCC	for	the	Camera	Reader	-	iOS

	

The	following	table	lists	the	various	DMCC	commands	supported	by	the	cmbSDK	when
using	the	built-in	camera	for	barcode	scanning.	

	

Note:	Many	of	these	commands	are	also	supported	by	the	MX	mobile	terminals.
Commands	that	are	unique	to	the	camera	reader	are	indicated	as	such	with	an	X	in
the	last	column.

	



t it le:	Cognex	Mobile	Barcode	SDK	for	iOS	(v2.0.x)	;	ver:	2.7.x 23	/	34

GET/SET 	 COMMAND	 PARAMETER(S)	 DESCRIPT ION	 CAMERAREADER	

GET/SET	 BATTERY.CHARGE	 	

Returns	the
current	battery
level	of	the
device	as	a
percentage.	

	 BEEP	 	 Plays	the	audible
beep	(tone).	

GET/SET	 BEEP.GOOD	 [0-3]	[0-2]	

Sets	the	number
of	beeps	(0-3)
and	the	beep

tone/pitch	(0-	2,
for	low,

medium,	high).
For	the	built-in
camera,	only	a
single	beep	with
no	pitch	control
is	supported.
Thus,	0	1	turns
the	beep	off,	1	1
turns	the	beep

on.	

GET/SET	 CODABAR.CODESIZE	 ON	min	max	OFF
min	max	

Accepts	any
length	Codabar.
Sets	min/max
length	of
accepted
Codabar.	

GET/SET	 C11.CHKCHAR	 ON	|	OFF	
Turns	Code	11
check	digit
on/off.	

GET/SET	 C11.CHKCHAR-OPTION	 1	2	
Requires	single
checksum.

Requires	double
checksum.	

GET/SET	 C11.CODESIZE	 ON	min	max	OFF
min	max	

Accepts	any
length	Code	11.
Sets	min/max
length	of



t it le:	Cognex	Mobile	Barcode	SDK	for	iOS	(v2.0.x)	;	ver:	2.7.x 24	/	34

accepted	Code
11.	

GET/SET	 C25.CODESIZE	 ON	min	max	OFF
min	max	

Accepts	any
length	Code	25.
Sets	min/max
length	of

accepted	Code
25.	

GET/SET	 C39.ASCII	 ON	|	OFF	
Turns	Code	39
extended	ASCII

on/off.	

GET/SET	 C39.CODESIZE	 ON	min	max	OFF
min	max	

Accepts	any
length	Code	39.
Sets	min/max
length	of

accepted	Code
39.	

GET/SET	 C39.CHKCHAR	 ON	|	OFF	
Turns	Code	39
check	digit
on/off	

GET/SET	 C93.ASCII	 ON	|	OFF	
Turns	Code	93
extended	ASCII

on/off	

GET/SET	 C93.CODESIZE	 ON	min	max	OFF
min	max	

Accepts	any
length	Code	93.
Sets	min/max
length	of

accepted	Code
93.	

	 CONFIG.DEFAULT	 	

Resets	most	of
the	camera	API
settings	to

default,	except
those	noted	as
not	resetting
(see	Appendix
B).	To	reset	all
settings,	use

DEVICE.DEFAULT.	
		

Specifies	results



t it le:	Cognex	Mobile	Barcode	SDK	for	iOS	(v2.0.x)	;	ver:	2.7.x 25	/	34

GET/SET	 DATA.RESULT-TYPE	 0	1	2	4	8	

to	be	returned
(sum	of	multiple
values):	None

Text	string	result
(default)

XML	results	
XML	stats
Scan	image
(see	IMAGE.*
commands)	

GET/SET	 DATABAR.EXPANDED	 ON	|	OFF	

Turns	the
DataBar
Expanded
symbology
on/off.	

GET/SET	 DATABAR.LIMITED	 ON	|	OFF	
Turns	the

DataBar	Limited
symbology
on/off.	

GET/SET	 DATABAR.RSS14	 ON	|	OFF	
Turns	the

DataBar	RSS14
symbology
on/off.	

GET/SET	 DATABAR.RSS14STACK	 ON	|	OFF	

Turns	the
DataBar	RSS14

Stacked
symbology
on/off.	

GET/SET	 DECODER.1D-
SYMBOLORIENTATION	 0	1	2	3	

Use
omnidirectional
scan	orientation.
Use	horizontal
and	vertical

scan	orientation.
Use	vertical

scan	orientation.
Use	horizontal

scan
orientation.	

	

Appendix	A	-	DMCC	f or	the	Camera	Reader	



t it le:	Cognex	Mobile	Barcode	SDK	for	iOS	(v2.0.x)	;	ver:	2.7.x 26	/	34

GET/SET	 Command	 Parameter(s)	 Description	 	

GET/SET	 DECODER.EFFORT	 1-5	

Sets	the	effort	level
for	image

analysis/decoding.
The	default	is	2.	Do
not	use	4-5	for
online	scanning.	

X	

GET/SET	 DECODER.MAX-SCAN-
TIMEOUT	 1-120	

Sets	the	timeout	for
the	live-stream

preview.	When	the
timeout	is	reached,

decoding	is
paused;	the	live-

stream	preview	will
remain	on-screen.	

X	

	 DEVICE.DEFAULT	 	
Resets	the	camera
API	settings	to
default	(see
Appendix	B).	

	

GET	 DEVICE.FIRMWARE-
VER	 	 Gets	the	device

firmware	version.	 	

GET	 DEVICE.ID	 	

Returns	device	ID
assigned	by
Cognex	to	the

scanning	device.
For	a	built-in

camera,	the	SDK
returns	53.	

	

GET/SET	 DEVICE.NAME	 	

Returns	the	name
assigned	to	the

device.	By	default,
this	is	“MX-“	plus
the	last	6	digits	of
DEVICE.SERIAL-

NUMBER.	

	

GET	 DEVICE.SERIAL-
NUMBER	 	

Returns	the	serial
number	of	the

device.	For	a	built-
in	camera,	the	SDK
assigns	a	pseudo-

	



t it le:	Cognex	Mobile	Barcode	SDK	for	iOS	(v2.0.x)	;	ver:	2.7.x 27	/	34

random	number.	

GET	 DEVICE.TYPE	 	

Returns	the	device
name	assigned	by
Cognex	to	the

scanning	device.
For	a	built-in

camera,	the	SDK
returns	“MX-
Mobile”.	

	

GET/SET	 FOCUS.FOCUSTIME	 0-10	

Sets	the	camera’s
auto-focus	period
(how	often	the
camera	should

attempt	to	refocus).
The	default	is	3.	

	

GET/SET	 I2O5.CHKCHAR	 ON	|	OFF	
Turns	Interleaved	2
of	5	check	digit

on/off.	
	

GET/SET	 I205.CODESIZE	
ON	min	max
OFF	min
max	

Accepts	any	length
Interleaved	2	of	5.
Sets	min/max	length

of	accepted
Interleaved	2	of	5.	

X
X	

GET/SET	 IMAGE.FORMAT	 0	1	2	

Scanner	returns
image	result	in
bitmap	format.
Scanner	returns

image	result	in	JPEG
format.	Scanner

returns	image	result
in	PNG	format.	

	

GET/SET	 IMAGE.QUALITY	 10,	15,	20,
...90	

Specifies	JPEG
image	quality.	 	

GET/SET	 IMAGE.SIZE	 0	1	2	3	

Scanner	returns	full
size	image.	Scanner
returns	1⁄4	size
image.	Scanner
returns	1/16	size
image.	Scanner
returns	1/62	size

image.	

	



t it le:	Cognex	Mobile	Barcode	SDK	for	iOS	(v2.0.x)	;	ver:	2.7.x 28	/	34

GET/SET	 LIGHT.AIMER	 0-1	
Disables/enables

the	aimer	(when	the
scanner	starts).	

	

GET/SET	 LIGHT.AIMER-
TIMEOUT	 0-600	

Timeout	in	seconds
for	an	aimer.	

This	value	is	always
overridden	by
DECODER.MAX-
SCAN-	TIMEOUT.	

	

GET/SET	 LIGHT.INTERNAL-
ENABLE	 ON	|	OFF	

Enables/disables
illumination	(when
the	scanner	starts).	

	

GET/SET	 MSI.CHKCHAR	 ON	|	OFF	 Turns	MSI	Plessey
check	digit	on/off.	 	

GET/SET	 MSI.CHKCHAR-
OPTION	 0	1	2	3	4	5	

Use	mod	10
checksum

Use	mod	10	mod
10	checksum
Use	mod	11

checksum	(IBM
algorithm)

Use	mod	11	mod
10	checksum	(IBM
algorithm)	Use	mod
11	checksum	(NCR

algorithm)
Use	mod	11	mod
10	checksum	(NCR

algorithm)	

X
X	

GET/SET	 MSI.CODESIZE	
ON	min	max
OFF	min
max	

Accepts	any	length
MSI	Plessey.

Sets	min/max	length
of	accepted	MSI

Plessey.	

X
X	

GET/SET	 SYMBOL.AZTECCODE	 ON	|	OFF	
Turns	the	Aztec
Code	symbology

on/off.	
	

GET/SET	 SYMBOL.CODABAR	 ON	|	OFF	 Turns	the	Codabar
symbology	on/off.	 	

Turns	the	Code	11



t it le:	Cognex	Mobile	Barcode	SDK	for	iOS	(v2.0.x)	;	ver:	2.7.x 29	/	34

GET/SET	 SYMBOL.C11	 ON	|	OFF	 symbology	on/off.	 X	

GET/SET	 SYMBOL.C128	 ON	|	OFF	 Turns	the	Code	128
symbology	on/off.	 	

	

Appendix	A	-	DMCC	f or	the	Camera	Reader	

GET/SET	 Command	 Parameter(s)	 Description	 	

GET/SET	 SYMBOL.C25	 ON	|	OFF	
Turns	the	Code	25
symbology	on/off

(standard).	
	

GET/SET	 SYMBOL.C39	 ON	|	OFF	 Turns	the	Code	39
symbology	on/off.	 	

GET/SET	 SYMBOL.C93	 ON	|	OFF	 Turns	the	Code	93
symbology	on/off.	 	

GET/SET	 SYMBOL.COOP	 ON	|	OFF	
Turns	the	COOP

symbology	(Code
25	variant)	on/off.	

X	

GET/SET	 SYMBOL.DATAMATRIX	 ON	|	OFF	
Turns	the	Data

Matrix	symbology
on/off.	

	

GET/SET	 SYMBOL.DATABAR	 ON	|	OFF	
Turns	the	DataBar
Expanded	and

Limited
symbologies	on/off.	

	

GET/SET	 SYMBOL.DOTCODE	 ON	|	OFF	 Turns	the	DotCode
symbology	on/off.	 	

GET/SET	 SYMBOL.IATA	 ON	|	OFF	
Turns	the	IATA

symbology	(Code
25	variant)	on/off.	

X	

GET/SET	 SYMBOL.INVERTED	 ON	|	OFF	
Turns	the	Inverted
symbology	(Code
25	variant)	on/off.	

X	



t it le:	Cognex	Mobile	Barcode	SDK	for	iOS	(v2.0.x)	;	ver:	2.7.x 30	/	34

GET/SET	 SYMBOL.ITF14	 ON	|	OFF	
Turns	the	ITF-14
symbology	(Code
25	variant)	on/off.	

X	

GET/SET	 SYMBOL.UPC-EAN	 ON	|	OFF	
Turns	the	UPC-A,
UPC-E,	EAN-8,	and

EAN-13
symbologies	on/off.	

	

GET/SET	 SYMBOL.MATRIX	 ON	|	OFF	
Turns	the	Matrix
symbology	(Code
25	variant)	on/off.	

X	

GET/SET	 SYMBOL.MAXICODE	 ON	|	OFF	 Turns	the	MaxiCode
symbology	on/off.	 X	

GET/SET	 SYMBOL.MSI	 ON	|	OFF	
Turns	the	MSI

Plessey	symbology
on/off.	

	

GET/SET	 SYMBOL.PDF417	 ON	|	OFF	 Turns	the	PDF417
symbology	on/off.	 	

GET/SET	 SYMBOL.PLANET	 ON	|	OFF	 Turns	the	PLANET
symbology	on/off.	 	

GET/SET	 SYMBOL.POSTNET	 ON	|	OFF	 Turns	the	POSTNET
symbology	on/off.	 	

GET/SET	 SYMBOL.4STATE-IMB	 ON	|	OFF	
Turns	the	Intelligent

Mail	Barcode
symbology	on/off.	

	

GET/SET	 SYMBOL.4STATE-
RMC	 ON	|	OFF	

Turns	the	Royal	Mail
Code	symbology

on/off.	
	

GET/SET	 SYMBOL.QR	 ON	|	OFF	
Turns	the	QR	and

MicroQR
symbologies	on/off.	

	

GET/SET	 TRIGGER.TYPE	 0	1	2	3	4	5	

Not	supported	Not
supported	Manual

(default)	Not
supported	Not
supported
Continuous	

	



t it le:	Cognex	Mobile	Barcode	SDK	for	iOS	(v2.0.x)	;	ver:	2.7.x 31	/	34

GET/SET	 UPC-EAN.EAN13	 ON	|	OFF	 Turns	the	EAN-13
symbology	on/off.	 X	

GET/SET	 UPC-EAN.EAN8	 ON	|	OFF	 Turns	the	EAN-8
symbology	on/off.	 X	

GET/SET	 UPC-EAN.UPC-A	 ON	|	OFF	 Turns	the	UPC-A
symbology	on/off.	 X	

GET/SET	 UPC-EAN.UPC-E	 ON	|	OFF	 Turns	the	UPC-E
symbology	on/off.	 X	

GET/SET	 UPC-EAN.UPCE1	 ON	|	OFF	 Turns	the	UPC-E1
symbology	on/off.	 	

GET/SET	 UPCE-
AN.SUPPLEMENT	 0	1-4	

Turns	off	UPC
supplemental

codes.	Turns	on	UPC
supplemental

codes.	

	

	

	

Appendix	B	-	Camera	Reader	Defaults	-	iOS

Appendix	B	-	Camera	Reader	Defaults	-	iOS

The	following	table	lists	the	defaults	the	SDK	uses	on	startup	for	the	camera	reader.	

Note:	At	the	low-level,	the	cmbSDK	supported	devices	can	perform	two	types	of
configuration	resets:	a	device	reset	and	a	config	reset.	A	device	reset	restores	all
configuration	properties	to	their	saved	defaults,	while	a	config	reset	restores	mostly
the	scanning	settings,	leaving	communication	settings	alone.	In	the	table	below,	those
items	that	are	only	reset	by	a	device	reset	are	indicated.

Note:	The	Reader	Device	method	resetConfig()	performs	a	config	reset.	To	perform	a
device	reset,	the	DMCC	command	DEVICE.RESET	would	need	to	be	issued.



t it le:	Cognex	Mobile	Barcode	SDK	for	iOS	(v2.0.x)	;	ver:	2.7.x 32	/	34

SETTING	 DEFAULT 	VALUE	 DEVICE
RESET
ONLY?	

BEEP.GOOD	 1	1	(Turn	beep	on)	 	

C11.CHKCHAR	 OFF	 	

C11.CHKCHAR-OPTION	 1	 	

C39.ASCII	 OFF	 	

C39.CHKCHAR	 OFF	 	

C93.ASCII	 OFF	 	

COM.DMCC-HEADER	 1	(Include	Result	ID)	 Y	

COM.DMCC-RESPONSE	 0	(Extended)	 Y	

DATA.RESULT-TYPE	 1	 Y	

DECODER.1D-
SYMBOLORIENTATION	 1	 	

DECODER.EFFORT	 2	 	

DECODER.MAX-SCAN-TIMEOUT	 60	 	

DEVICE.NAME	 “MX-“	+	the	last	six	digits	of
DEVICE.SERIAL-NUMBER	 	



t it le:	Cognex	Mobile	Barcode	SDK	for	iOS	(v2.0.x)	;	ver:	2.7.x 33	/	34

Symbologies	(SYMBOL.*)	 OFF	(all	symbologies	are
disabled)	

	

Symbology	sub-types
(groups):	DATABAR.EXPANDED

DATABAR.LIMITED
DATABAR.RSS14

DATABAR.RSS14STACK	UPC-
EAN.EAN13	

UPC-EAN.EAN8	UPC-EAN.UPC-A
UPC-EAN.UPC-E	UPCE-

AN.UPCE1	

ON	OFF	OFF	OFF	ON	ON	ON
ON	OFF	 	

FOCUS.FOCUSTIME	 3	 	

I2O5.CHKCHAR	 OFF	 	

IMAGE.FORMAT	 1	(JPEG)	 	

IMAGE.QUALITY	 50	 	

IMAGE.SIZE	 1	(1/4	size)	 	

LIGHT.AIMER	

Default	based	on
cameraMode:	0:	NoAimer	and

FrontCamera
1:	PassiveAimer	and

ActiveAimer	

Y	

LIGHT.AIMER-TIMEOUT	 60	 	

LIGHT.INTERNAL-ENABLE	 OFF	 	

	

Appendix	B	-	Camera	Reader	Def ault s	



t it le:	Cognex	Mobile	Barcode	SDK	for	iOS	(v2.0.x)	;	ver:	2.7.x 34	/	34

Setting	 Default	Value	 Device	Reset	Only?	

Minimum/maximum	code	lengths	 ON	4	40	 	

MSI.CHKCHAR	 OFF	 	

MSI.CHKCHAR-OPTION	 0	 	

TRIGGER.TYPE	 2	(Manual)	 	

UPC-EAN.SUPPLEMENT	 0	 	

	

	

Precaut ions	-	iOS

Precaut ions	-	iOS

Observe	these	precautions	when	installing	the	Cognex	product,	to	reduce	the	risk	of
injury	or	equipment	damage:

To	reduce	the	risk	of	damage	or	malfunction	due	to	over-voltage,	line	noise,
electrostatic	discharge	(ESD),	power	surges,	or	other	irregularities	in	the	power	supply,
route	all	cables	and	wires	away	from	high-voltage	power	sources.
Changes	or	modifications	not	expressly	approved	by	the	party	responsible	for
regulatory	compliance	could	void	the	user’s	authority	to	operate	the	equipment.
Cable	shielding	can	be	degraded	or	cables	can	be	damaged	or	wear	out	more	quickly
if	a	service	loop	or	bend	radius	is	tighter	than	10X	the	cable	diameter.	The	bend
radius	must	begin	at	least	six	inches	from	the	connector.
This	device	should	be	used	in	accordance	with	the	instructions	in	this	manual.
All	specifications	are	for	reference	purpose	only	and	may	be	changed	without	notice.	


