
t it le:	Barcode	Scanning	with	a	Smartphone	-	iOS	(v2.0.x)	;	ver:	2.7.x 1	/	4

Barcode	Scanning	with	a	Smartphone	-	iOS
(v2.0.x)

Barcode	Scanning	with	a	Smartphone

It	is	important	to	recognize	that	there	are	several	fundamental	differences	in	the
capabilities	of	smartphones	(and	tablets)	as	barcode	scanning	devices.	These	differences
result	in	a	user	experience	different	from	purpose-built	scanners,	impacting	the	design	of
the	mobile	barcode	scanning	application.

These	differences	and	the	general	impact	they	have	on	your	application	are	the
following:

A	smartphone	does	not	have	a	dedicated	hardware	trigger.	Without	a	hardware
trigger,	the	application	program	itself	is	generally	responsible	for	initiating	the
scanning	process,	which	results	in	accessing	the	built-in	camera,	displaying	a	preview
screen	if	required,	and	analyzing	captured	frames	from	the	video	stream	for
barcodes.
A	smartphone	(unless	otherwise	configured)	does	not	have	an	aimer.	Generally,	the
application	program	provides	a	live-stream	camera	preview	on	the	mobile	device
screen,	thereby	allowing	the	user	to	see	what	the	camera	sees	and	can	then	position
the	device	over	the	barcode.
Mobile	device	orientation	may	need	to	be	considered.	Most	users	hold	and	use	a
mobile	device	primarily	in	a	portrait	orientation	and	for	barcode	scanning.	Having	the
camera	in	this	orientation	is	generally	sufficient.	However,	most	mobile	device
cameras	have	a	higher	resolution	along	their	landscape	orientation.	When	scanning
very	long	or	dense	barcodes,	reorienting	the	device	to	landscape	can	be	beneficial
and	even	necessary	to	decode	these	barcodes.
Image	analysis	and	barcode	decoding	is	performed	in	software	on	the	mobile	device
which	can	be	a	CPU	intensive	task.	For	this	reason	(and	others	discussed	later),	it	is
highly	recommended	to	only	enable	the	symbologies	and	features	of	the	SDK	your
application	will	need,	not	everything	the	cmbSDK	is	capable	of.

The	cmbSDK	has	been	specifically	engineered	to	make	these	differences	as	transparent
as	possible	to	the	application	developer	and	the	user.	By	following	a	few	simple
guidelines,	it	is	possible	to	develop	applications	that	work	and	behave	the	same,	whether
using	an	MX-1000	mobile	terminal,	or	just	the	built-in	camera	of	the	device.

Mobile	Device	Triggering

Without	a	hardware	trigger,	mobile	devices	must	use	alternative	methods	to	initiate
barcode	scanning.	There	are	three	common	paradigms	used:	

Applicat ion	or	workf low	driven	t rigger:	In	this	paradigm,	it	is	the	application



t it le:	Barcode	Scanning	with	a	Smartphone	-	iOS	(v2.0.x)	;	ver:	2.7.x 2	/	4

code	itself,	or	the	business	logic/workflow	of	the	application	that	starts	the	scanning
process.	In	other	words,	the	user	of	the	application	has	reached	a	point	where	a
barcode	needs	to	be	scanned,	so	the	application	invokes	the	scanning	module.	In
simple	programming	terms,	this	is	akin	to	calling	a	function	like	"startScanner()".	
Virtual	t rigger:	This	is	where	the	application	program	provides	a	button	on	the
screen	whereby	the	user	can	use	to	start/stop	the	scanning	process.	Depending	on
the	application	design,	the	user	may	be	required	to	press	and	hold	the	virtual	button
to	keep	the	scanner	running.	This	method	is	similar	to	the	workflow	driven	method	as
the	button	from	the	user	interface	is	merely	being	used	to	invoke	the	scanning
module.	
Simulated	t rigger:	For	this	method,	one	of	the	buttons	on	the	mobile	device,
typically	the	volume-down	button,	is	used	to	simulate	a	hardware	trigger.	When	the
user	presses	and	holds	this	button,	the	scanner	starts/stops	just	like	when	a	trigger	is
pulled	on	a	purpose-built	scanner.	This	method	is	not	commonly	used	as	users	find	it
non-	intuitive	and	inconvenient	to	use	the	volume	key	in	this	fashion.	

The	cmbSDK	supports	all	three	of	these	methods,	any	one	of	which	(or	multiple)	can	be
used	in	an	application.		

Mobile	Device	Aiming

As	previously	discussed,	unlike	like	purpose-built	scanners,	mobile	devices	do	not	have	a
built-in	aimer.	Barcode	aimingis	generally	accomplished	by	providing	a	live-stream
preview	from	the	camera	on	the	mobile	device	display:	the	user	can	then	reposition	the
device	until	the	barcode	presents	in	the	fie ld	of	view	and	is	decoded.This	task	is	greatly
simplified	with	the	cmbSDK	as	it	provides	a	built-in	preview	control	that	can	be	displayed
full-screen,partial	screen,	and	in	either	portrait	or	landscape	orientation.The	cmbSDK	also
supports	"passive"	aimers:	devices	that	attach	to	the	mobile	device	or	mobile	device
case	that	use	theLED	flash	of	the	device	as	a	light	source	to	project	an	aiming/targeting
pattern.	The	advantage	to	these	types	of	aimers	isthat	an	on-screen	preview	is	no	longer
required	(since	the	mobile	device	can	now	project	an	aimer	pattern	similar	to	apurpose-
built	scanner).	One	limitation	of	passive	aimers,	though,	is	that	since	the	mobile	device
flash	is	being	used	forthe	aimer,	using	the	LED	flash	for	general	scanning	illumination	is
not	available.

Mobile	Device	Orientat ion

Mobile	devices	support	developing	applications	for	e ither	portrait	orientation,	landscape
orientation,	or	auto-rotation	between	the	two.	The	cmbSDK	fully	supports	all	three	options
for	both	the	presentation	of	the	barcode	preview	as	well	as	the	scan	direction.	As
mentioned	previously,	most	barcodes	can	be	scanned	by	a	mobile	device	regardless	of
the	orientation	of	the	application	and/or	mobile	device.

In	some	circumstances,	though,	using	landscape	orientation	may	be	advantageous	or
even	necessary.	Mobile	cameras	have	a	higher	resolution	along	the	"height"	of	the
image	in	portrait	mode.	For	example,	a	common	resolution	used	is	1280x720.	When
scanning	barcodes	in	portrait	mode,	this	means	that	720	pixels	of	data	are	available	for



t it le:	Barcode	Scanning	with	a	Smartphone	-	iOS	(v2.0.x)	;	ver:	2.7.x 3	/	4

barcode	decoding	along	the	horizontal	axis.	If	scanning	a	particularly	long	or	dense
barcode	(e.g.	a	large	PDF417),	using	the	landscape	orientation	provides	1280	pixels	on
the	horizontal	scan	line.	Orientation	makes	little 	to	no	difference	when	scanning	"square"
barcodes	like	QR,	Data	Matrix,	and	MaxiCode.	

Mobile	Device	Performance

Today's	smartphones	and	tablets	have	significant	computing	power.	With	multi-core	CPUs
and	even	dedicated	image	processors,	they	provide	an	ideal	platform	for	cost-effective
and	efficient	barcode	decoding.	As	powerful	as	these	devices	are,	developers	are	still
advised	to	consider	optimizing	their	barcode	scanning	applications.	While	the	SDK	has
been	optimized	specifically	for	mobile	environments,	image	analysis	and	barcode
decoding	is	still	a	CPU	intensive	activity:	and	since	these	processes	must	share	the
mobile	device	CPU	with	the	operating	system,	services,	and	other	applications,
developers	should	limit	their	applications	to	only	using	the	features	of	the	SDK	that
satisfy	their	needs.

Application	optimizations	include	the	following:	

Only	enable	decoding	for	the	barcode	types	the	application	needs	to	scan.The
cmbSDK	supports	the	decoding	of	almost	40	different	barcode	types	and	subtypes,
and	while	you	can	enable	all	of	these,	it	can	negatively	impact	performance	as	well
as	introduce	unwanted	side	effects:	
	The	more	symbologies	enabled,	the	slower	the	performance.	This	can	lead	to
sluggish	decoding	and	the	degradation	of	the	overall	performance	of	the	mobile
device,	leaving	the	user	with	an	inaccurate	impression	of	the	SDK’s	capabilitie .
	False	reads	are	possible.	This	is	particularly	possible	when	some	of	the	weaker
symbologies,	like	Code	25,	are	enabled	without	proper	consideration	and	configuration
of	other,	more	advanced	features	like	minimum	code	length	and	barcode	location.
These	features	help	mitigate	false	reads	with	the	weak	symbologies,	but	at	a	cost	of
degraded	performance	(and	again,	are	not	intended	to	all	be	turned	on	and	used	at
the	same	time).	
Using	an	optimal	camera	resolution.	By	default,	the	cmbSDK	uses	HD	images
(typically	1280x720	)	for	barcode	decoding.	This	resolution	is	sufficient	for	all	but	the
very	smallest	or	dense	of	barcodes.	As	the	application	developer,	you	can	use	a
higher	resolution	(full	HD),	but	keep	in	mind	that	these	images	are	significantly	larger,
so	they	will	require	more	time	to	analyze	and	decode.		
Using	an	appropriate	decoder	effort	level.	The	SDK	has	a	user-configurable	effort-
level	that	control	show	aggressively	the	SDK	performs	image	analysis.	Like	most
other	settings,	the	SDK	uses	a	default	value	(level	2)	that	is	sufficient	for	almost	all
barcodes.	Using	a	higher	level	can	result	in	better	decoding	of	poorer	quality
barcodes,	but	at	the	price	of	slower	performance.	

For	these	reasons,	when	the	cmbSDK	is	initialized	for	use	with	the	built-in	camera	of	the
mobile	device,	no	barcode	symbologies	are	enabled	by	default:	the	application	must
explicitly	enable	the	symbologies	it	needs.	As	most	barcode	scanning	applications	only
truly	need	to	scan	a	handful	of	symbologies,	this	behavior	steers	the	developer	to	using
the	SDK	in	an	efficient	manner.



t it le:	Barcode	Scanning	with	a	Smartphone	-	iOS	(v2.0.x)	;	ver:	2.7.x 4	/	4

Enabling	symbologies	is	a	very	simple	process,	which	is	explained	later	in	this	document.	

	


