
1 / 16

Cognex Mobile Barcode SDK - Cordova Plugin (v2.0.x)

Introduction

The purpose of these wiki pages is to provide detailed description of the API methods of the Cordova plugin that implements the cmbSDK.

Platform Targets

The plugin on the JavaScript side of things, is implemented as one js file that can be found in the www folder of your Cordova app.

Supports the two major platforms: Android and iOS. All features on both platforms are tailored to work the same from a user/developer
point of view.

Supports two modes of scanning: With a smartphone camera, which utilizes the Manatee Works Barcode Scanner SDK (property of
Cognex) and with a dedicated hardware scanner from the MX* series (hardware designed and produced by Cognex).

Impementation

In the plugin folder, we also provide a sample folder, which is basically three files that can be copied to your js/index.js css/index.css and
index.html of your project and a cmbconfig.js file that is copied automatically to the /js folder, when the plugin is installed.

It covers other implementations too, specifically Ionic and a Hybrid app approach based on SAP/FIORI platform.

Installation

To build an awesome app with Cordova, we first need to create one with the cordova starter:

cordova create awesome-cordova-app-with-cmbsdk

cd awesome-cordova-app-with-cmbsdk

cordova plugin add absolute_path_to_plugin_directory //for example: /Users/superUser/cmb-cordova-master

cordova platform add android

//cordova platform add ios //if you want to build on ios

For an Ionic solution:

#install ionic

sudo npm install -g cordova ionic

#start an ionic app with tabs layout

ionic start awesome-ionic-app tabs

cd awesome-ionic-app

#add our plugin

ionic cordova plugin add /WORKPLACE/PLUGINS/cmb-cordova //path to where you unzipped our plugin

#add the platform

ionic cordova platform add android@7.0.0

brew update && brew install gradle

see https://gradle.org/install/

//to build directly from the console need to change the permissions of the gradlew file

sudo chmod 755 /Users/**/platforms/android/gradlew

//going to need ionic-native too

npm install ionic-native --save

//will run on android with live refresh and console logs

ionic cordova run android -l -c

2 / 16

This will create an app. The developer needs to be familiar with the process of developing on Cordova. There are quirks, like iOS will want a
signing profile, or Android will complain about the manifest file.

Once there is a Cordova app that builds on the desired platform, we can add our Cognex solution.

In the Cordova plugin folder from the sample folder we need to copy the index.html into the platform www folder. The index.js into
www/js/index.js, and the index.css into www/css/index.css. cmbconfig.js is copied automatically to the www/js folder.

Licensing the SDK

If you plan to use the cmbSDK to do mobile scanning with a smartphone or tablet (with no MX mobile terminal), then the SDK requires the
installation of a license key. Without a license key, the SDK will still operate, although scanned results will be obfuscated (the SDK will
randomly replace characters in the scan result with an asterisk character).

Contact your Cognex Sales Representative for information on how to obtain a license key including trial licenses which can be used for 30
days to evaluate the SDK.

After obtaining your license key, add the following line in your application's AndroidManifest.xml file, under the application tag:

<meta-data android:name="MX_MOBILE_LICENSE" android:value="YOUR_MX_MOBILE_LICENSE"/>

Next, put your key in place of YOUR_MX_MOBILE_LICENSE.

<application android:hardwareAccelerated="true" android:icon="@mipmap/icon" android:label="@string/app_name" android:suppor
 <activity android:configChanges="orientation|keyboardHidden|keyboard|screenSize|locale" android:label="@string/acti
 <intent-filter android:label="@string/launcher_name">

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 <meta-data android:name="MX_MOBILE_LICENSE" android:value="g/9ytJzcja+sxt4DTEDxR4hp6sZh9bmL97vUx+EE9uY="/>

 </application>

Changelog

version 1.2.8

Update README.md

version 1.2.7

Add function for cmbSDK license key

version 1.2.6

Supportng cordova android 7.x

version 1.2.5

Update to cmbSDK v. 2.0.2 for iOS only

version 1.2.4

Supported SAP platform. Fixed issue with icons for iOS, and camera feature for Android. We can use now the same plugin without any
changes on SAP platform also.

version 1.2.3

Update to cmbSDK v. 2.0.1

3 / 16

version 1.2.2

Bug fixes

version 1.2.1

iOS MX-100 improvements.
Android scan image result fixes.

version 1.2.0

Added missing architecture libs.
Fixed different symbology index numbers on Android and iOS platforms.
Added AAR for Android support instead of JAR and SO.
MX - 100 support added for iOS only.

version 1.1.2

Added setPreviewOptions(). See CONSTANTS.PREVIEW_OPTIONS.
Added setTriggerType(). Sets how we handle the closing of the scanner after a result has been received. See: TRIGGER_TYPES.
Removed setDeviceType() Moved the device selection to loadScanner().
Changed how loadScanner() works on native Side, it doesn't connect to the device by default, we now have to call
mwbScanner.connect() after loadScanner() finishes loading.
Changed the callback nature of loadScanner(), it now returns a proper callback.
Changed the callback nature of startScanning() and stopScanning(), they now do not return a callback at all instead we need to listen to
startStop event by setting the setActiveStartScanningCallback(callback)

removed the redundant "var callback" redeclaring of the parameters.

version 1.1.1

Added promise support for isSymbologyEnabled(), setSymbologyEnabled(), getConnectionState(), setCommand().
getConnectionState() saves the callback function so next time we call getConnectionState() it reuses it.
Changed the name of the function setConnectionState to setConnectionStateDidChangeOfReaderCallback() to be more consistent
with the native side.
Changed the CONSTANT names for SYMBOLS, from plain variables to an object for easy access.
Fixed the symbology CONSTANTS starting from index 0 for DataMatrix instead of 1.

version 1.1.0

Removed overhead callbacks.
Fixed startScanning not setting the callback properly.

Constants

The list of Constants that can be used by a developer is as follows:

Devices

There are two types of devices that you can use with this Cordova plugin. An MX device which is a hardware scanner, and a smartphone
Camera.

DEVICES : ["DEVICE_TYPE_MX_1000","DEVICE_TYPE_MOBILE_DEVICE"],

DEVICES_FRIENDLY : ["MX Device","Camera"],

Triggers

There are two types of triggers, but six values are reserved. For the MANUAL_TRIGGER setting, once a barcode is found during the
scanning process, the scanner will automatically stop further scanning. For CONTINUOUS_TRIGGER it will keep looking for a barcode and
will fire the event each time it finds a barcode.

4 / 16

TRIGGER_TYPES : ["","","MANUAL_TRIGGER","","","CONTINUOUS_TRIGGER"],

Availability

AVAILABILITY_UNKNOWN : 0,

AVAILABILITY_AVAILABLE : 1,

AVAILABILITY_UNAVAILABLE : 2,

Connection State

When we monitor the connection state of the READER device (either Camera or MX) with setConnectionStateDidChangeOfReaderCallback
we can get one of the following integer values that can be accessed via the CONSTANTS object

CONNECTION_STATE_DISCONNECTED : 0,

CONNECTION_STATE_CONNECTING : 1,

CONNECTION_STATE_CONNECTED : 2,

CONNECTION_STATE_DISCONNECTING : 3,

Camera Modes

The developer has access to the following camera modes:

CAMERA_MODES : ["NO_AIMER", "PASSIVE_AIMER", "ACTIVE_AIMER", "FRONT_CAMERA"]

NO_AIMER : Use camera with no aimer. Preview is on, illumination is available.

PASSIVE_AIMER : Use camera with a basic aimer (e.g., StingRay). Preview is off, illumination is not available.

ACTIVE_AIMER : Use camera with an active aimer (e.g., MX-100). Preview is off, illumination is available.

FRONT_CAMERA : Use mobile device front camera. Preview is on, illumination is not available.

Symbols

A list of available SYMBOLS to use with the our scanner.

Not all symbols are implemented on both Camera Scanner and MX* Scanner

Refer to the wiki pages Apendix A DMCC for the Camera Reader for more info on support for SYMBOLS.

SYMBOLS : {

 "SYMBOL.UNKNOWN" : 0

 ,"SYMBOL.DATAMATRIX" : 1

 ,"SYMBOL.QR" : 2

 ,"SYMBOL.C128" : 3

 ,"SYMBOL.UPC-EAN" : 4

 ,"SYMBOL.C11" : 5

 ,"SYMBOL.C39" : 6

 ,"SYMBOL.C93" : 7

 ,"SYMBOL.I2O5" : 8

 ,"SYMBOL.CODABAR" : 9

 ,"SYMBOL.EAN-UCC" : 10

 ,"SYMBOL.PHARMACODE" : 11

 ,"SYMBOL.MAXICODE" : 12

 ,"SYMBOL.PDF417" : 13

 ,"SYMBOL.MICROPDF417" : 14

 ,"SYMBOL.DATABAR" : 15

 ,"SYMBOL.POSTNET" : 16

 ,"SYMBOL.PLANET" : 17

https://cmbdn.cognex.com/wiki/cordova-plugin-for-cmbsdk/api-methods/setconnectionstatedidchangeofreadercallback
https://cmbdn.cognex.com/wiki/cognex-mobile-barcode-sdk-for-android/appendix-a-dmcc-for-the-camera-reader

5 / 16

 ,"SYMBOL.4STATE-JAP" : 18

 ,"SYMBOL.4STATE-AUS" : 19

 ,"SYMBOL.4STATE-UPU" : 20

 ,"SYMBOL.4STATE-IMB" : 21

 ,"SYMBOL.VERICODE" : 22

 ,"SYMBOL.RPC" : 23

 ,"SYMBOL.MSI" : 24

 ,"SYMBOL.AZTECCODE" : 25

 ,"SYMBOL.DOTCODE" : 26

 ,"SYMBOL.C25" : 27

 ,"SYMBOL.C39-CONVERT-TO-C32" : 28

 ,"SYMBOL.OCR" : 29

 ,"SYMBOL.4STATE-RMC" : 30

}

Bar code Result Object

interface BarcodeResult {

 readString : string,

 symbologyString: string,

 symbology : integer,

 goodRead : bool,

 xml: string,

 imageGraphics? : string,

 image? : string

};

The result from a successful scan is returned in an JavaScript Object with the layout shown above. The image is optional and it depends on
the enableImage() API method.

Api Methods

loadScanner()

cmbScanner.loadScanner(deviceType,[callback])

To get a scanner up and running, the first thing to do, is to call the loadScanner() method.

It expects a device type and a callback function as a second param. The callback function is wrapped within a Promise and it's returned as
one.

This method does not connect to the Reader Device. We need to call connect() in the callback (promise) to actually connect to the
Reader Device.

​/* @return

{

 const (string)action : the taken action (will always return LOAD READER)

 (string) result : the message from the server

 (bool) status : if the reader was loaded it will return true

 (string) err : the string error if an error was thrown

 (int) type : the type of the device that we connected to [0,1]

 (string) name : the name of the type of device DEVICES[type]

}

*/

The device type parameter can either be a string constant, with possible values:

https://cmbdn.cognex.com/wiki/cordova-plugin-for-cmbsdk/api-methods/enableimageenableimagegraphics

6 / 16

DEVICES : ["DEVICE_TYPE_MX_1000","DEVICE_TYPE_MOBILE_DEVICE"]

Or we can just pass 0 for DEVICE_TYPE_MX and 1 for DEVICE_TYPE_MOBILE_DEVICE

Examples

//example as a callback:

 cmbScanner.loadScanner("DEVICE_TYPE_MOBILE_DEVICE",function(result){

 cmbScanner.connect();

 });

//example as a Promise

 cmbScanner.loadScanner("DEVICE_TYPE_MOBILE_DEVICE").then(function(result){

 cmbScanner.connect();

 });

//example passing the device type as an integer

 cmbScanner.loadScanner(0).then(function(result){

 cmbScanner.connect();

 });

connect()

To connect to a READER after we've loaded it, we need to use Connect.

cmbScanner.connect([callback]);

/* @return

 (promise) {

 status : boolean, if connection succeded true if not false

 err : string , if status false err will not be null

 }

*/

The result from the connect() method is returned as a Promise and it will return the result of the connection attempt.

Examples

/** Using connect and returning the value as a promise */

cmbScanner.connect().then(function(connectionState){

 console.log(connectionState);

// { "status" : false, "err" : "Did not return OK in success" }

});

/** Using connect and returning the value as a callback function */

cmbScanner.connect(function(connectionState){

 console.log(connectionState);

});

Even though we return the result of the connect action, acting on the result from the connect callback for the purpose of updating DOM
elements or calling API methods that only work after we have a connection set, is not advised.

There is a listener callback (setConnectionStateDidChangeOfReaderCallback) function that can be set, that will always trigger whenever
there is a change in the connection state and we should really keep that code there.

https://cmbdn.cognex.com/wiki/cordova-plugin-for-cmbsdk/api-methods/setconnectionstatedidchangeofreadercallbackcallback

7 / 16

disconnect()

/* @return

 (promise) {

 status : boolean, if connection succeded true if not false

 err : string , if status false err will not be null

 }

*/

Just as there is connect(), there is a disconnect() method that does the opossite of connect() :

cmbScanner.disconnect([callback])

Similarly to connect(), disconnect() too returns the connectionState in the callback function (which is wrapped into a Promise), and we could
act on the connectionState, for example change the label from "connected" to "disconnected":

cmbScanner.disconnect(function(connectionState){

 if(connectionState == cmbScanner.CONSTANTS.CONNECTION_STATE_DISCONNECTED){

 document.getElementById('some-label').innerHtml('DISCONNECTED');

 }

 else if (connectionState == cmbScanner.CONSTANTS.CONNECTION_STATE_CONNECTED){

 document.getElementById('some-label').innerHtml('DISCONNECTED');

 }

 })

But, just like connect(), we don't have to do this because of setConnectionStateDidChangeOfReaderCallback() that sets a listener to all
connect / disconnect / connecting / disconnecting events.

setResultCallback()

To handle successful scan results, we need to setup the ResultCallback function. This is done via the setResultCallback.

This method DOESN'T return a PROMISE.

It sets the callback function for all didReceiveReadResultFromReader events.

cmbScanner.setResultCallback(callback)

cmbScanner.setResultCallback(function(result){

 if (result.symbologyString == 'NO READ') {

//Perform some action when no barcode is read or just leave it empty

 // navigator.notification.alert("Stopped");

 }

 else if (result && result.readString) {

//Perform some action on barcode read

//example:

 document.getElementById('content').insertAdjacentHTML('beforeend','<div class="result">
//we could put all this DOM handling in the dom helper object, but since it's just one line of code let's leave it be
 }

});

ResultCallback will fire every time there is a barcode scan (or the scanner was stopped either manually or it timedout with No Result).

8 / 16

Bar code Result Object

The structure of the barcode result is as follows:

interface BarcodeResult {

 readString : string,

 symbologyString: string,

 symbology : integer,

 goodRead : bool,

 xml: string,

 imageGraphics? : string,

 image? : string

};

setAvailabilityCallback()

To monitor for availability of the MX device use:

setAvailabilityCallback([callback])

Set a listener on availability changes. Will fire when the device becomes available or loses availability.

Does not return a Promise.

Usage

cmbScanner.setAvialabilityCallback(funciton(availability){

 /**

 * availability - int representation of the Device availability

 */

 if (availability == CONSTANTS.AVAILABILITY_UNKNOWN) {

 //Perform some action when device availability is not known

 }

 else if (availability == CONSTANTS.AVAILABILITY_AVAILABLE) {

 //Perform some action when device is available

 }

 else if (availability == CONSTANTS.AVAILABILITY_UNAVAILABLE) {

 //Perform some action when device is not available

 }

});

setConnectionStateDidChangeOfReaderCallback()

cmbScanner.setConnectionStateDidChangeOfReaderCallback([callback])

All connect/disconnect events should be handled within the callback function set with this API method.

This method DOESN'T return a PROMISE. It sets the callback function for all connectionStateDidChangeOfReader events.

The callback is optional, because the plugin provides a default callback that handles connect/disconnect events, but the default callback is
only a placeholder function and doesn't offer much functionality to the end app developer.

The App developer should always set this method, as most of the configuration settings for the Reader will be done within this listener.

9 / 16

When the connetionStateDidChange is fired, it will return one of 4 possible integer values

CONNECTION_STATE_DISCONNECTED : 0,

CONNECTION_STATE_CONNECTING : 1,

CONNECTION_STATE_CONNECTED : 2,

CONNECTION_STATE_DISCONNECTING : 3

These can be accessed directly as integers, or the developer can use them from the CONSTANTS enum available to them by accessing the
CONSTANTS object within the cmbScanner.

cmbScanner.CONSTANTS.CONNECTION_STATE_CONNECTED

Example of this in action would be:

cmbScanner.setConnectionStateDidChangeOfReaderCallback(function(connectionState){

 if(connectionState == cmbScanner.CONSTANTS.CONNECTION_STATE_CONNECTED){

//do stuff while connected, like set a symbology to enabled

 return cmbScanner.setSymbologyEnabled("SYMBOL.QR",true).then(function(rr){

//see setSymbologyEnabled for more info on the rr (returned result) object

//after the symbol has been set we can send a command. Let's set the flash ON

 cmbScanner.sendCommand("SET LIGHT.INTERNAL-ENABLE ON")

 .then(function(result){

//if the command is succesful we should have the LIGHT turn ON whenever we start the scanning process

//and to check if the flash is ON we can use the isLightsOn API method

 cmbScanner.isLightsOn().then(function(lights_on){

//light should be on

 });

 });

 });

 }

 });

Here we not only listen to the connect/disconnect event, but we also enable a few symbologies and set the flash light on, via a command
and the API method isLightsOn.

startScanning()/stopScanning()

To start/stop the scanning process, we use these two methods. They can either be called from a button via the app's UI, or we can call the
programmatically.

startScanning Declaration

void cmbScanner.startScanning([callback])

stopScanning Declaration

void cmbScanner.stopScanning(callback)

Usage

They take an optional callback as a parameter, but it will overwrite the "main" callback function only if it's not set by
setActiveStartScanningCallback() already.

Because of the nature of the READERS we should always set the setActiveStartScanningCallback() function, if we want to control certain
DOM elements based on the status of the scanner (Reader).

https://cmbdn.cognex.com/wiki/cordova-plugin-for-cmbsdk/api-methods/setactivestartscanningcallback

10 / 16

cmbScanner.startScanning(function(scannerState){

 if(scannerState)

 document.getElementById('scanner-active-label')[removed] = 'RUNNING';

 else

 document.getElementById('scanner-active-label')[removed] = 'STOPPED';

});

Examples

Start Scanner <!-- button to start the scanner -->

Stop Scanner <!-- button to stop the scanner -->

<a href="cmbScanner.startScanning(function(scanner_state){

//this callback function will be used, only if we don't already have one set via

// setActiveStartScanningCallback. In all other cases it will be ignored.

console.log(scanner_state);

});">Start Scanner <!-- button to start the scanner with a callback, avoid this and always use setActiveStartScanningCa

setActiveStartScanningCallback()

If we want to monitor the state of the scanner (READER), we need to setup this callback function.

The callback function will be fired every time the scanner starts looking for a bar code (either via a Camera Reader, or via the trigger
button on an MX device) or stops looking (via a manual stopScanning() call or if it finds a bar code).

Declaration

cmbScanner.setActiveStartScanningCallback(callback)

Usage

cmbScanner.setActiveStartScanningCallback(function(scannerState){

 if(scannerState == true){

 console.log('scanner is working');

 }

 else{

 console.log('scanner is not working');

 }

 });

As previously mentioned, setting this function, completely removes the need to setup a callback on the startScanning() or stopScanning()
methods.

Even though it may seem more appropriate to just have that action return in a promise or a callback immediately after
startScanning()/stopScanning() is called, due to the nature of the stopScanning process, which occurs every time there's is a result, it's
best to listen for both actions (starting and stopping) in the same place.

setSymbologyEnabled()

Once there is a connection to the Reader, we can enable Symbols by calling

setSymbologyEnabled(symbol,on_off,[callback]).

11 / 16

If Mobile Camera is used as a Reader, there are NO SYMBOLS enabled by default. We need to enable each SYMBOL that we want to
use.

It expects a string value of the symbol to be enabled, see constants for more info on how to use SYMBOLS.

Returns a Promise.

setSymbologyEnabled(symbol,on_off,[callback])

/* @return A promise that contains the JSON object

 {

 action : the DMCC command that was invoked

 status : did it succeed or not, if an error happened it will be set to false

 result : if the symbol is enabled then true, if not then false

 err : the error message if the action didn't complete

 }

*/

Example of how you would use it:

cmbScanner.setSymbologyEnabled("SYMBOL.C93",true,function(result){

 console.log(JSON.stringify(result));

//will print {"action" : "SET SYMBOL.C93 ON","status" : true, "result" : true, "err" : null}

});

//or with a Promise

cmbScanner.setSymbologyEnabled("SYMBOL.C93",true).then(function(result){

 console.log(JSON.stringify(result));

 //will print {"action" : "SET SYMBOL.C93 ON","status" : true, "result" : true, "err" : null}

});

isSymbologyEnabled()

To check if we have a symbol enabled, we use isSymbologyEnabled().

isSymbologyEnabled(symbol,[callback])

The result is returned in the callback which is then wrapped into a Promise.

/**

@return A promise that contains the object

{

 action : the DMCC command that was invoked

 status : did it succeed or not, if an error happened it will be set to false

 result : if the symbol is enabled then true, if not then false

 err : the error message if the action didn't complete

}

*/

https://cmbdn.cognex.com/wiki/constants

12 / 16

Example

cmbScanner.isSymbologyEnabled("SYMBOL.C93",function(rr){

 console.log(JSON.stringify(rr));

//will print {"action" : "GET SYMBOL.C93","status" : true, "err" : null,"result" : true}

});

setCameraMode()

To set how the camera will behave when we use camera device as a barcode reader we use:

(void) cmbScanner.setCameraMode(cameraMode)

Note: It should be called before we call loadScanner() for it to take effect. Calling it after the scanner was loaded won't do anything if the
scanner is loaded.

/**

Use camera with no aimer. Preview is on, illumination is available.

NO_AIMER = 0,

Use camera with a basic aimer (e.g., StingRay). Preview is off, illumination is not available.

PASSIVE_AIMER = 1,

Use camera with an active aimer (e.g., MX-100). Preview is off, illumination is available.

ACTIVE_AIMER = 2,

Use mobile device front camera. Preview is on, illumination is not available.

FRONT_CAMERA = 3

*/

setPreviewContainerPositionAndSize()

To set the size and position of the preview container (only available to the user when they use the camera reader):

(void) setPreviewContainerPositionAndSize(x,y,w,h)

/*

 @params x,y,w,h

 x,y : top left position

 w,h : width and height of the rectangular in precentages of the full container

*/

cmbScanner.setPreviewContainerPositionAndSize(0,0,100,50);

//will set the preview to 0,0 and 100% width 50% height

setLightsOn()

13 / 16

To enable the flash light programmatically, we can use:

setLightsOn(lights_on, callback)

/**

@return A promise that contains the JSON object

{

 (string) action : the DMCC command that was invoked

 (bool) status : did it succeed or not, if an error happened it will be set to false

 (string) err : the error message if the action didn't complete

 (bool) result : the result of the taken action, in this case TRUE if the light was enabled, false if not

}

*/

Example

cmbScanner.setLightsOn(true,function(response){

 //console.log(response);

});

cmbScanner.setLightsOn(true).then(function(response){

//or with a promise, the callback function is wrapped within a promise

//so if we don't set a callback function as a param, the default one will be used

//and it will return a promise to continue the chain

});

isLightsOn()

To check if the flash light is ON, we can use:

isLightsOn(callback)

/**

@return A promise that contains the JSON object

{

 (string) action : the DMCC command that was invoked

 (bool) status : did it succeed or not, if an error happened it will be set to false

 (string) err : the error message if the action didn't complete

 (bool) result : the result of the taken action, in this case TRUE if the light was enabled, false if not

}

*/

Example

cmbScanner.isLightsOn(true,function(response){

 //console.log(response);

});

cmbScanner.isLightsOn(true).then(function(response){

//or with a promise, the callback function is wrapped within a promise

//so if we don't set a callback function as a param, the default one will be used

//and it will return a promise to continue the chain

});

14 / 16

enableImage()/enableImageGraphics()

If we want to return the last image seen by the decoder we use enableImage(). If we want image graphics stats on the returned image we use
enableImageGraphics().

Declaration

cmbScanner.enableImage(on_off_switch); cmbScanner.enableImageGraphics(on_off_switch);

Usage

cmbScanner.enableImage(true);

//it will enable the image in the result

cmbScanner.enableImageGraphics(true);

//will show where exactly the barcode was detected on the image

The structure of the bar code result object is:

interface BarcodeResult {

 readString : string,

 symbologyString: string,

 symbology : integer,

 goodRead : bool,

 xml: string,

 imageGraphics? : string,

 image? : string

};

If set, the returning image is returned as base64 png image.

sendCommand()

Most of the API methods can be replaced with just sending the appropriate commands to the MX (or Camera) reader.

(Promise) sendCommand([callback])

Send command receives a callback and wraps it into a promise, so the chain can be continued.

Usage

cmbScanner.sendCommand("SET SYMBOL.POSTNET OFF")

 .then(function(result){

//and in the promise let's see what our command did

 console.log(JSON.stringify(result));

 });

//or like this

cmbScanner.sendCommand("SET LIGHT.INTERNAL-ENABLE ON")

 .then(function(result){

//if the command is succesful we should have the LIGHT turn ON whenever we start the scanning process

 console.log(JSON.stringify(result));

 });

15 / 16

The first command will disable the SYMBOL POSTNET. The second will set the Flash ON.

Both actions can be performed with their appropriate API functions setSymbologyEnabled() and setLightsOn() and generally speaking a
developer should always prefer the API functions to the sendCommand().

However, there are cases where the Cordova plugin doesn't cover certain use case scenarios, and we can always use the sendCommand for
that.

Example

If we want to change the way our MX device "beeps" and "lights" we can use:

ACTION COMMAND PARAMETER PARAM
VALUES

DESCRIPTION OF
PARAMETERS RESULTING ACTION

SET|GET OUTPUT.USER-
CONFIGURE

event number,
beep tone, beep

number, LED
color, vibration

[1,2] [0-2]
[0-3] [0-7]
[ON|OFF]

1: USER_EVENT_1,
2: USER_EVENT_2

[0]: Low, [1]: Medium,
[2]: High

Number of beeps

[0]: Off, [1]: Blue, [2]:
Green, [3]: Cyan, [4]:

Red, [5]: Magenta, [6]:
Yellow, [7]: White

enable/disable ON:
The reader vibrates.

OFF: The reader does
not vibrate.

Sets the beeper tone and
the number of beeps for

USER_EVENT_1 or
USER_EVENT_2.

SET OUTPUT.USER-CONFIGURE

So for our example we would have:

cmbScanner.sendCommand("SET OUTPUT.USER-CONFIGURE 1 1 2 4 ON").then(function(response){

 //console.log(response); //print out the result of the action

});

This will configure user event #1 to two medium beeps with red LED and vibration. In order to activate this event, we use:

cmbScanner.sendCommand("OUTPUT.USER1").then(function(response){

 //this will call the stored settings item for USER1, so the MX device will basically beep twice with red LED and vibra
})

resetConfig()

If we need to reset the configuration settings stored for the MX/Camera reader we can use:

Declaration

resetConfig([callback])

Usage

16 / 16

cmbScanner.resetConfig(function(result){

 console.log(result);

})

Result Interface

/*

@return A promise that contains the JSON object

{

 (string) action : the DMCC command that was invoked

 (bool) status : did it succeed or not, if an error happened it will be set to false

 (string) err : the error message if the action didn't complete and there is an error. default is null

 (bool) result : the result of the sendCommand action

}

*/

registerSDK()

Another way to add your license key if you are using camera device. This one will overwrite your license key from manifest for android or
info.plist for ios.

registerSDK("SDK_KEY")

Example

cmbScanner.registerSDK("SDK_KEY");

https://cmbdn.cognex.com/knowledge/cognex-mobile-barcode-sdk-for-android#cmbsdk-for-android/licensing-the-sdk
https://cmbdn.cognex.com/knowledge/cognex-mobile-barcode-sdk-for-ios#cmbsdk-for-ios/licensing-the-sdk

