
t it le:	Xamarin.iOS	(v2.0.x)	;	ver:	2.7.x 1	/	11

Xamarin.iOS	(v2.0.x)

Gett ing	Started

In	the	following	sections	we	will	explain	how	our	sample	app	is	developed	step	by	step.

Open	Visual	Studio	and	follow	this	steps:

1.	Go	to	File	->	New	->	Project .

2.	Create	Blank	App	(iPhone).

t it le:	Xamarin.iOS	(v2.0.x)	;	ver:	2.7.x 2	/	11

When	your	new	project	is	loaded	add	reference	to	XamarinDataManLibrary.dll	file .

t it le:	Xamarin.iOS	(v2.0.x)	;	ver:	2.7.x 3	/	11

Then	open	Project	properties	and	add	frameworks	that	we	used	as	Addit ional	mtouch
arguments:

Next	open	your	Inf o.plist 	file 	and	set	some	project	properties	for	your	needs	(app
name,	deployment	target,	main	interface,	etc..).

t it le:	Xamarin.iOS	(v2.0.x)	;	ver:	2.7.x 4	/	11

Important	thing	here	is	to	add	Camera	permission	for	this	app.	In	Visual	Studio	there	is	no
options	to	add	this	permission	from	here.	You	need	to	open	your	Inf o.plist 	file 	in	some
text	editor	and	add	this	lines:

<key>NSCameraUsageDescription</key>
<string>Camera	used	for	scanning</string>

Also	if	you	use	MX	Device	as	reader	device	add	this	protocols	in	Info.plist:

t it le:	Xamarin.iOS	(v2.0.x)	;	ver:	2.7.x 5	/	11

<key>UISupportedExternalAccessoryProtocols</key>
<array>
		<string>com.cognex.dmcc</string>
		<string>com.demo.data</string>
</array>

View	Controller

The	ViewCont roller	will	be	our	first	controller	in	Main.storyboard.	Here	we	are
creating	some	UI	e lements	and	variables	that	will	be	used	later	in	this	controller.

public	partial	class	ViewController	:	UIViewController,	ICMBReaderDeviceDelegate
				{
								protected	ViewController(IntPtr	handle)	:	base(handle)
								{
												//	Note:	this	.ctor	should	not	contain	any	initialization	logic.
								}

								CMBReaderDevice	readerDevice;
								public	bool	isScanning	=	false;

								public	override	void	ViewDidLoad()
								{
												base.ViewDidLoad();

												...

lblConnect ion	-	Label	UI	e lement	for	current	connection	status.

txtResult 	-	TextView	UI	e lement	for	result	that	will	be	read	from	scanned	barcode.

btnScan	-	Button	UI	e lement	that	will	trigger	StartScanning	or	StopScanning.

ivPreview	-	ImageView	UI	element	for	showing	the	last	frame	of	a	preview	or	scanning
session.

CMBReaderDevice	-	cmbSDK	object	that	will	present	MX	Device	or	Phone	Camera
depends	of	our	configuration.

Configure	ReaderDevice

Here	we	override	the	ViewWillAppear	method	to	configure	reader	device	object	when
this	view	will	appear.

If	we	want	to	use	MX	Device	for	scanning	we	are	using

t it le:	Xamarin.iOS	(v2.0.x)	;	ver:	2.7.x 6	/	11

readerDevice	=	CMBReaderDevice.ReaderOfMXDevice();

The	availability	of	the	MX	Device	can	change	when	the	device	turns	ON	or	OFF,	or	if	the
USB	cable	gets	connected	or	disconnected,	and	is	handled	by	the
ICMBReaderDeviceDelegate	interface.	We	set	this	interface	as	property	for	reader
device	with

readerDevice.WeakDelegate	=	this;

and	allow	us	to	listen	these	three	events:

public	void	DidReceiveReadResultFromReader(CMBReaderDevice	reader,	CMBReadResults	readResults)
public	void	AvailabilityDidChangeOfReader(CMBReaderDevice	reader)
public	void	ConnectionStateDidChangeOfReader(CMBReaderDevice	reader)

If	we	want	to	configure	reader	device	as	Mobile	Camera.

readerDevice	=	CMBReaderDevice.ReaderOfDeviceCameraWithCameraMode(CDMCameraMode.NoAimer,	CDMPreviewO
ption.Defaults,	ivPreview);

The	CameraMode	parameter	is	of	the	type	CDMCameraMode,	and	it	accepts	one	of
the	following	values:

NoAimer:	Initializes	the	reader	to	use	a	live-stream	preview	(on	the	mobile	device
screen)	so	the	user	can	position	the	barcode	within	the	camera’s	fie ld	of	view	for
detection	and	decoding.	Use	this	mode	when	the	mobile	device	does	not	have	an
aiming	accessory.
PassiveAimer:	Initializes	the	reader	to	use	a	passive	aimer,	which	is	an	accessory
that	is	attached	to	the	mobile	device	or	mobile	device	case	that	uses	the	built-in	LED
flash	of	the	mobile	device	as	a	light	source	for	projecting	an	aiming	pattern.	In	this
mode,	no	live-stream	preview	is	presented	on	the	device	screen,	since	an	aiming
pattern	will	be	projected.
FrontCamera:	Initializes	the	reader	to	use	the	front	facing	camera	of	the	mobile
device,	if	available	(not	all	mobile	devices	have	a	front	camera).	This	is	an	unusual,
but	possible	configuration.	Most	front-facing	cameras	do	not	have	auto	focus	and
illumination,	and	provide	significantly	lower	resolution	images.	This	option	should	be
used	with	care.	In	this	mode	illumination	is	not	available.

All	of	the	above	modes	provide	the	following	default	settings	for	the	reader:

t it le:	Xamarin.iOS	(v2.0.x)	;	ver:	2.7.x 7	/	11

The	rear	camera	is	used.
The	zoom	feature	isa	vailable	and	a	button	to	control	it	is	visible	on	the	live-streamp
review	(if	displayed).
The	simulated	hardware	trigger	is	disabled.
When	startScanning()	is	called,	the	decoding	process	is	started.	(Seek
CDMPreviewOptionPaused	for	more	details.)

Based	on	the	selected	mode,	the	following	additional	options	and	behaviors	are	set:

NoAimer
The	live-stream	preview	is	displayed	when	the	startScanning()	method	is	called.
Illumination	is	available	and	a	button	to	control	it	is	visible	on	the	live-stream	preview.
If	commands	are	sent	to	the	reader	for	aimer	control,	they	will	be	ignored.

PassiveAimer
The	live-stream	preview	will	not	be	displayed	when	the	startScanning()	method	is
called.
Illumination	is	not	available	and	the	live-stream	preview	will	not	have	an	illumination
button.
If	commands	are	sent	to	the	reader	for	illumination	control,	they	will	be	ignored,	since
it	is	assumed	in	this	mode	that	the	built-in	LED	of	the	mobile	device	is	being	used	for
the	aimer.

FrontCamera
The	live-stream	preview	is	displayed	when	the	startScanning()	method	is	called.
The	front	camera	is	used.
Illumination	is	not	available,	and	the	live-stream	preview	will	not	have	an	illumination
button.	If	commands	are	sent	to	the	reader	for	aimer	or	illumination	control,	they	will
be	ignored.

The	previewOpt ions	parameter	(of	type	CDMPreviewOpt ion)	is	used	to	change	the
reader’s	default	values	or	override	defaults	derived	from	the	selected	CameraMode.
Multiple	options	can	be	specified	by	OR-ing	them	when	passing	the	parameter.	The
available	options	are	the	following:

Def ault s:	Use	this	option	to	accept	all	defaults	set	by	the	CameraMode.
NoZoomBtn:	This	option	hides	the	zoom	button	on	the	live-stream	preview,
preventing	a	user	from	adjusting	the	zoom	of	the	mobile	device	camera.
NoIllumBtn:	This	hides	the	illumination	button	on	the	live-stream	preview,
preventing	a	user	from	toggling	the	illumination.
HwTrigger:	This	enables	a	simulated	hardware	trigger	(the	volume	down	button)for
starting	scanning	on	the	mobile	device.	This	button	only	starts	scanning	when
pressed.	It	does	not	need	to	be	held	like	a	more	traditional	purpose-built	scanner’s
trigger.	Pressing	the	button	a	second	time	does	not	stop	the	scanning	process.

t it le:	Xamarin.iOS	(v2.0.x)	;	ver:	2.7.x 8	/	11

Paused:	If	using	a	live-stream	preview,	when	this	option	is	set,	the	preview	will	be
displayed	when	the	startScanning()	method	is	called,	but	the	reader	will	not	start
decoding	(i.e.	looking	for	barcodes)	until	the	user	presses	the	on-screen	scanning
button	to	actually	start	the	scanning	process.
AlwaysShow:	This	forces	alive-stream	preview	to	be	displayed,	even	if	an	aiming
mode	has	been	selected	(e.g.	CameraMode	==	PassiveAimer)

The	last	parameter	of	the	type	UIView	is	optional	and	is	used	as	a	container	for	the
camera	preview.	If	the	parameter	is	left	nil,	a	full	screen	preview	will	be	used.

Connect ing	to	Device

After	configuring	ReaderDevice	we	need	to	connect	to	the	device.

readerDevice.ConnectWithCompletion((error)	=>	{
			if	(error	!=	null)
			{
									new	UIAlertView("Failed	to	connect",	error.Description,	null,	"OK",	null).Show();
			}
});

If	there	is	some	error	while	trying	to	connect	error	will	be	thrown	as	parameter	in	callback
function.	If	everything	is	fine	error	parameter	will	be	null.

This	function	will	trigger	ConnectionStateDidChangeOfReader	method.	If	connection	is
successful	reader.Connect ionState	==	Connect ionState.Connected.

After	successful	connection	we	can	set	some	settings	for	ReaderDevice.	ReaderDevice
settings	can	be	set	with	already	wrapped	functions	or	directly	with	sending	commands	to
the	configured	device.

For	example	if	Mobile	Camera	is	used	as	a	ReaderDevice 	there	are	no	symbologies
enabled	by	def ault .	You	must	enable	the	symbologies	that	you	want	to	use	with	the
SetSymbology	wrapped	function.

In	this	example	we	are	enable	some	symbologies	and	set	setting	to	get	the	last	frame
from	scanning	in	ivPreview	ImageView.

readerDevice.SetSymbology(CMBSymbology.DataMatrix,	true,	(error)	=>
{
				if	(error	!=	null)
				{
										System.Diagnostics.Debug.WriteLine("FALIED	TO	ENABLE	[DataMatrix],	",	error.LocalizedDescr
iption);
				}
});
	readerDevice.SetSymbology(CMBSymbology.Qr,	true,	(error)	=>

t it le:	Xamarin.iOS	(v2.0.x)	;	ver:	2.7.x 9	/	11

	{
				if	(error	!=	null)
				{
										System.Diagnostics.Debug.WriteLine("FALIED	TO	ENABLE	[Qr],	",	error.LocalizedDescription);
				}
	});
readerDevice.SetSymbology(CMBSymbology.C128,	true,	(error)	=>
{
			if	(error	!=	null)
			{
									System.Diagnostics.Debug.WriteLine("FALIED	TO	ENABLE	[C128],	",	error.LocalizedDescription)
;
			}
});
readerDevice.SetSymbology(CMBSymbology.UpcEan,	true,	(error)	=>
{
			if	(error	!=	null)
			{
									System.Diagnostics.Debug.WriteLine("FALIED	TO	ENABLE	[UpcEan],	",	error.LocalizedDescriptio
n);
			}
	});

readerDevice.ImageResultEnabled	=	true;
readerDevice.SVGResultEnabled	=	true;
readerDevice.DataManSystem.SendCommand("SET	IMAGE.SIZE	0");

Scanning	Barcodes

With	a	properly	configured	reader,	you	are	now	ready	to	scan	barcodes.	This	can	be	done
by	calling	the	startScanning	method	from	your	ReaderDevice	object.

What	happens	next	is	based	on	the	type	of	Reader	Device	and	how	it	has	been
configured,	but	in	general:

If	using	an	MX	Device,	the	user	can	now	press	a	trigger	button	on	the	device	to	turn
the	scanner	on	and	read	a	barcode;
If	using	the	camera	reader,	the	cmbSDK	starts	the	camera,	displays	the	configured
live-stream	preview,	and	begins	analyzing	the	frames	from	the	video	stream,	looking
for	a	configured	barcode	symbology.

Scanning	stops	under	one	of	the	following	conditions:

The	reader	found	and	decoded	a	barcode;
The	user	released	the	trigger	or	pressed	the	stop	button	on	the	live-stream	preview
screen;
The	camera	reader	timed	out	with	out	finding	a	barcode;
The	application	itself	calls	the	stopScanning()	method.

When	a	barcode	is	decoded	successfully	(the	first	case),	you	will	receive	a	ReadResult s

t it le:	Xamarin.iOS	(v2.0.x)	;	ver:	2.7.x 10	/	11

iterable	result	collection	object	in	ReaderDevice	listener	method.

If	your	MX	Device	is	configured	to	work	with	multi	code	scanning,	you	can	access	all
the	scanned	results	from	the	result s.SubResult s	property	which	is	an	array	that
contains	ReaderResult 	objects	and	it	will	be	null	if	single	code	scanning	is	used.

Example

public	void	DidReceiveReadResultFromReader(CMBReaderDevice	reader,	CMBReadResults	readResults)
								{
												btnScan.SetTitle("START	SCANNING",	UIControlState.Normal);
												isScanning	=	false;

												tableData.RemoveAllObjects();

												if	(readResults.SubReadResults	!=	null	&&	readResults.SubReadResults.Length	>	0)
												{
																tableData.AddObjects(readResults.SubReadResults);
																tvResults.ReloadData();

												}
												else	if	(readResults.ReadResults.Length	>	0)	{
																tableData.Add(readResults.ReadResults[0]);
												}

												tableSource.SetItems(tableData);
												tableSource.displayResult(0);

												tvResults.ReloadData();
												tvResults.SelectRow(NSIndexPath.FromRowSection(0,0),	false,	UITableViewScrollPosition.No
ne);
								}

Disconnect ing	from	Device

There	may	be	cases	when	a	device	disconnects	due	to	low	battery	condition	or	manual
cable	disconnection.	These	cases	can	be	detected	by	the
ConnectionStateDidChangeOfReader	callback	of	the	ICMBReaderDeviceDelegate.

Note:	The	AvailabilityDidChangeOfReader	method	is	also	called	when	the	device
becomes	physically	unavailable.	It	means	that	the	(re)connection	is	not	possible.	Always
check	the	availability	property	of	the	ReaderDevice	object	before	trying	to	call	the
ConnectWithCompletion	method.

t it le:	Xamarin.iOS	(v2.0.x)	;	ver:	2.7.x 11	/	11

Licensing	the	SDK

If	you	plan	to	use	the	cmbSDK	to	do	mobile	scanning	with	a	smartphone	or	a	tablet	(with
no	MX	mobile	terminal),	then	the	SDK	requires	the	installation	of	a	license	key.	Without	a
license	key,	the	SDK	will	still	operate,	although	scanned	results	will	be	obfuscated	(the
SDK	will	randomly	replace	characters	in	the	scan	result	with	an	asterisk	character).

Contact	your	Cognex	Sales	Representative	for	information	on	how	to	obtain	a	license	key
including	trial	licenses	which	can	be	used	for	30	days	to	evaluate	the	SDK.

After	obtaining	your	license	key	there	is	two	ways	to	add	your	license	key	in	application.

The	first	one	is	to	add	it	as	a	key	with	a	value	in	the	project	specific	Inf o.plist 	file:

<key>MX_MOBILE_LICENSE</key>
<string>Your	license	key</string>

And	the	second	way	to	implement	an	activation	is	directly	from	the	code	before	you
connect	to	your	device:

....
readerDevice.WeakDelegate	=	this;
//CMBReaderDevice.SetCameraRegistrationKey("YOUR_MX_MOBILE_LICENSE");
connectToReaderDevice();

