
t it le:	Cognex	Mobile	Barcode	SDK	for	Android	(v2.1.x)	;	ver:	2.7.x 1	/	41

Cognex	Mobile	Barcode	SDK	for	Android
(v2.1.x)

Introduct ion

Android	(operat ing	system)

Android	is	a	mobile	operating	system	developed	by
Google,	based	on	the	Linux	kernel	and	designed
primarily	for	touchscreen	mobile	devices	such	as
smartphones	and	tablets.

Android's	source	code	is	released	by	Google	under	an
open	source	license,	although	most	Android	devices
ultimately	ship	with	a	combination	of	free	and	open
source	and	proprietary	software,	including	proprietary
software	required	for	accessing	Google	services.

Apps	are	written	using	the	Android	software	development
kit	(SDK)	and,	often,	the	Java	programming	language.	Java
may	be	combined	with	C/C++	together	with	a	choice	of
non-default	runtimes	that	allow	better	C++	support.	The
Kotlin	and	Go	programming	languages	are	also	supported,
the	latter	with	a	limited	set	of	application	programming
interfaces	(API).

The	SDK	includes	a	comprehensive	set	of	development
tools,	including	a	debugger,	software	libraries,	a	handset
emulator	based	on	QEMU,	documentation,	sample	code,	and
tutorials.	Android	Studio,	based	on	IntelliJ	IDEA,	is	the
primary	integrated	development	environment	(IDE)	for
Android	application	development.	Other	development	tools
are	available,	including	a	native	development	kit	(NDK)	for
applications	or	extensions	in	C	or	C++,	Google	App
Inventor,	a	visual	environment	for	novice	programmers,	and
various	cross	platform	mobile	web	applications	frameworks.

t it le:	Cognex	Mobile	Barcode	SDK	for	Android	(v2.1.x)	;	ver:	2.7.x 2	/	41

There	is	also	a	framework	based	on	Apache	Cordova	for
porting	ChromeHTML	5	web	applications	to	Android,
wrapped	in	a	native	application	shell.

Overview

The	Cognex	Mobile	Barcode	SDK	(cmbSDK)	is	a	simple,	yet	powerful	tool	for
developing	mobile	barcode	scanning	applications.	Based	on	Cognex's	flagship	DataMan
technology	and	the	Manatee	Works	Barcode	Scanning	SDK,	the	cmbSDK	allows
developers	to	create	barcode	scanning	applications	for	the	entire	range	of	mobile
scanning	devices:	from	smartphones	and	tablets	to	the	MX	line	of	high-performance,
industrial	barcode	scanners.	By	adhering	to	a	few	simple	guidelines,	developers	can	write
applications	that	will	work	with	any	supported	MX	mobile	terminal	or	smartphone	with	little
or	no	conditional	code.	The	SDK	achieves	this	by	abstracting	the	device	through	a
"reader"	connection	layer:	once	the	application	establishes	its	connection	with	the
desired	reader,	a	single,	unified	API	is	used	to	configure	and	interface	with	the	device.

The	SDK	provides	two	basic	readers:	an	“MX	reader”	for	barcode	scanning	with	devices
like	the	MX-1000	and	MX-1502,	and	a	“camera	reader”	for	barcode	scanning	using	the
built-in	camera	of	the	mobile	device.	

Legal	Not ices

The	software	described	in	this	document	is	furnished	under	license,	and	may	be	used	or
copied	only	in	accordance	with	the	terms	of	such	license	and	with	the	inclusion	of	the
copyright	notice	shown	on	this	page.	Neither	the	software,	this	document,	nor	any	copies
thereof	may	be	provided	to,	or	otherwise	made	available	to,	anyone	other	than	the
licensee.	Title	to,	and	ownership	of,	this	software	remains	with	Cognex	Corporation	or	its
licensor.	Cognex	Corporation	assumes	no	responsibility	for	the	use	or	re liability	of	its
software	on	equipment	that	is	not	supplied	by	Cognex	Corporation.	Cognex	Corporation
makes	no	warranties,	e ither	express	or	implied,	regarding	the	described	software,	its
merchantability,	non-infringement	or	its	fitness	for	any	particular	purpose.

The	information	in	this	document	is	subject	to	change	without	notice	and	should	not	be
construed	as	a	commitment	by	Cognex	Corporation.	Cognex	Corporation	is	not
responsible	for	any	errors	that	may	be	present	in	e ither	this	document	or	the	associated
software.

Companies,	names,	and	data	used	in	examples	herein	are	fictitious	unless	otherwise
noted.	No	part	of	this	document	may	be	reproduced	or	transmitted	in	any	form	or	by	any
means,	e lectronic	or	mechanical,	for	any	purpose,	nor	transferred	to	any	other	media	or
language	without	the	written	permission	of	Cognex	Corporation.

Copyright	©	2017.	Cognex	Corporation.	All	Rights	Reserved.
Portions	of	the	hardware	and	software	provided	by	Cognex	may	be	covered	by	one	or
more	U.S.	and	foreign	patents,	as	well	as	pending	U.S.	and	foreign	patents	listed	on	the

t it le:	Cognex	Mobile	Barcode	SDK	for	Android	(v2.1.x)	;	ver:	2.7.x 3	/	41

Cognex	web	site	at:	https://www.cognex.com/patents.

The	following	are	registered	trademarks	of	Cognex	Corporation:

Cognex,	2DMAX,	Advantage,	AlignPlus,	Assemblyplus,	Check	it 	with	Checker,
Checker,	Cognex	Vision	f or	Indust ry,	Cognex	VSOC,	CVL,	DataMan,
DisplayInspect ,	DVT,	EasyBuilder,	Hotbars,	IDMax,	In-Sight ,	Laser	Killer,	MVS-
8000,	OmniView,	PatFind,	PatFlex,	Pat Inspect ,	PatMax,	PatQuick,
SensorView,	SmartView,	SmartAdvisor,	SmartLearn,	Ult raLight ,	Vision
Solut ions,	VisionPro,	VisionView

The	following	are	trademarks	of	Cognex	Corporation:

The	Cognex	logo,	1DMax,	3D-Locate,	3DMax,	BGAII,	CheckPoint ,	Cognex
VSoC,	CVC-1000,	FFD,	iLearn,	In-Sight 	(design	insignia	with	cross-hairs),	In-
Sight 	2000,	InspectEdge,	Inspect ion	Designer,	MVS,	NotchMax,	OCRMax,
PatMax	RedLine,	Proof Read,	SmartSync,	Prof ilePlus,	SmartDisplay,
SmartSystem,	SMD4,	VisiFlex,	Xpand

Other	product	and	company	trademarks	identified	herein	are	the	trademarks	of	their
respective	owners.

Barcode	Scanning	with	an	MX	Mobile	Terminal

The	SDK	supports	Cognex’s	line	of	MX	mobile	terminals,	including	the	MX-1000	and	MX-
1502	devices.	You	can	get	a	detailed	description	of	these	devices	at	the	official	website
of	Cognex	(https://www.cognex.com).	Some	of	their	features	regarding	cmbSDK	usage
are	the	following:

Hardware	t rigger:	MX	mobile	terminals	include	two	built-in	triggers	for	barcode
scanning,	and	support	an	optional	pistol	grip	with	trigger.
Illuminat ion	and	aiming:	MX	mobile	terminals	have	built-in	illumination	and	aiming.
Stored	conf igurat ions:	MX	mobile	terminals	can	be	preconfigured	using	Cognex’s
DataMan	Setup	Tool	for	Windows,	the	Quick	Setup	mobile	application,	or	the	SDK.	MX
mobile	terminals	can	save	and	restore	multiple	configuration	sets.
High-capacity	bat tery:	MX	mobile	terminals	have	an	integrated	battery	that
powers	the	MX	scanning	engine	and	the	mobile	device.	The	optional	pistol	grip
includes	a	second	battery	that	doubles	the	MX’s	power	capacity.

The	following	features	of	the	MX	platform	combines	the	following	features	to	make
application	development	straightforward:	

Ease	of 	setup:	MX	mobile	terminals	come	preconfigured	to	provide	a	great	out-of-
the-box	experience.	As	MX	mobile	terminals	have	saved	configurations	that	can	be
distributed	to	all	your	devices.	setup	is	usually	not	necessary	on	application	level.
However,	it	is	recommended	to	put	the	device	in	a	“known”	state	when	the	barcode
scanning	application	starts,	so	the	cmbSDK	provides	methods	to	restore	the	device
defaults	as	well	as	to	control	individual	settings.	

https://www.cognex.com/patents
https://www.cognex.com/

t it le:	Cognex	Mobile	Barcode	SDK	for	Android	(v2.1.x)	;	ver:	2.7.x 4	/	41

Having	a	live	preview	on	the	smartphone's	screen	is	not	necessary	due	to	the
illumination	and	aimer,	thus	MX	mobile	terminals	do	not	support	a	“live-stream”
decoding	mode.

	

Debugging	on	MX	Mobile	Terminal

The	MX	Mobile	Terminals	connect	to	your	device	via	USB	or	lightning	port.	This
means	that	the	port	is	occupied	while	your	application	is	running,	but	there	are	other
ways	to	debug	your	application,	for	example	via	Wi-Fi.

Debugging	on	Android:

To	debug	using	Android	Studio,	Eclipse,	Xamarin	or	any	other	program	that	can	run
Android	applications,	connect	your	Android	device	via	USB	and	make	sure	you	can	run
and	debug	your	application	using	the	USB	cable.	To	have	the	device	connected	without
using	a	USB	cable,	open	Android	Debug	Bridge	(adb)	from	the	Android	tools.

1.	 Type	"adb	tcpip	5555"	to	set	the	device's	port	to	5555.
2.	 Get	the	device's	IP	address	by	typing	"adb	shell	ip	-f 	inet 	addr	show	wlan0"	or

find	it	manually	in	your	settings	menu.
3.	 Type	"adb	connect 	device_ip:5555"	to	connect	to	your	device.	This	prompts	a

message	if	it	was	connected	successfully.
4.	 Disconnect	the	USB	cable	and	proceed	to	run	or	debug	your	app	on	your	Android

device	as	if	it	was	connected	via	cable.	Note:	After	you	plug	MX	Mobile	Terminal	in
your	Mobile	Device,	Wi-Fi	connection	might	be	lost.	If	this	happens,	repeat	step	3.

5.	 When	you	are	done,	type	"adb	-s	device_ip:5555	usb"	to	switch	your	device	back
to	USB	connection	mode.

WARNING:	Leaving	the	wireless	debugging	option	enabled	is	not	recommended,	as
anyone	in	your	network	can	connect	to	your	device	in	debug,	even	if	you	are	in	data
network.	Do	it	only	when	you	are	connected	to	a	trusted	Wi-Fi	and	do	not	forget	to
disconnect	when	you	are	done	(see	step	5).

Barcode	Scanning	with	a	Smartphone	-	Android

Barcode	Scanning	with	a	Smartphone

It	is	important	to	recognize	that	there	are	several	fundamental	differences	in	the
capabilities	of	smartphones	and	tablets	as	barcode	scanning	devices.	These	differences
result	in	a	user	experience	different	from	purpose-built	scanners,	impacting	the	design	of
the	mobile	barcode	scanning	application.

t it le:	Cognex	Mobile	Barcode	SDK	for	Android	(v2.1.x)	;	ver:	2.7.x 5	/	41

These	differences	and	the	general	impact	they	have	on	your	application	are	the
following:

A	smart	phone	does	not	have	a	dedicated	hardware	trigger.	Without	a	hardware
trigger,	the	application	program	is	generally	responsible	for	initiating	the	scanning
process,	which	results	in	accessing	the	built-in	camera,	displaying	a	preview	screen	if
required,	and	analyzing	captured	frames	from	the	video	stream	for	barcodes.
A	smartphone,	unless	otherwise	configured,	does	not	have	an	aimer.	Generally,	the
application	program	provides	a	live-stream	camera	preview	on	the	mobile	device
screen,	thereby	allowing	the	user	to	see	what	the	camera	sees	and	can	then	position
the	device	over	the	barcode.
Mobile	device	orientation	may	need	to	be	considered.	Most	users	hold	and	use	a
mobile	device	primarily	in	a	portrait	orientation	for	barcode	scanning,	which	is
generally	sufficient.	However,	most	mobile	device	cameras	have	a	higher	resolution
along	their	landscape	orientation.	When	scanning	very	long	or	dense	barcodes,
reorienting	the	device	to	landscape	can	be	beneficial	and	even	necessary.
Image	analysis	and	barcode	decoding	is	performed	in	software	on	the	mobile	device
which	can	be	a	CPU	intensive	task.	It	is	highly	recommended	to	only	enable	the
symbologies	and	features	of	the	SDK	that	your	application	needs.

The	cmbSDK	makes	these	differences	as	transparent	as	possible	to	the	application
developer	and	the	user.	By	following	a	few	simple	guidelines,	you	can	develop
applications	that	work	and	behave	the	same	when	using	for	example	an	MX-1000	mobile
terminal,	or	just	the	built-in	camera	of	the	device.

Mobile	Device	Triggering

Without	a	hardware	trigger,	mobile	devices	must	use	alternative	methods	to	initiate
barcode	scanning.	There	are	three	common	methods	used:

Applicat ion	or	workf low	driven	t rigger:	The	application	code	or	the	business
logic/workflow	of	the	application	starts	the	scanning	process.	In	other	words,	when	the
user	of	the	application	has	reached	a	point	where	a	barcode	needs	to	be	scanned,
the	application	invokes	the	scanning	module.	In	simple	programming	terms,	this	is
akin	to	calling	a	function	like	"startScanner()".
Virtual	t rigger:	The	application	program	provides	a	button	on	the	screen	which	the
user	can	use	to	start/stop	the	scanning	process.	Depending	on	the	application	design,
the	user	may	be	required	to	press	and	hold	the	virtual	button	to	keep	the	scanner
running.	This	is	similar	to	the	workflow	driven	method	as	the	button	from	the	user
interface	is	used	to	invoke	the	scanning	module.
Simulated	t rigger:	One	of	the	buttons	on	the	mobile	device,	typically	the	volume-
down	button,	is	used	to	simulate	a	hardware	trigger.	When	the	user	presses	and	holds
this	button,	the	scanner	starts/stops	just	like	when	a	trigger	is	pulled	on	a	purpose-
built	scanner.	This	method	is	not	commonly	used	as	users	find	it	non-intuitive	and
inconvenient.

The	cmbSDK	supports	all	three	methods,	any	of	which	(or	multiple)	can	be	used	in	an
application.

t it le:	Cognex	Mobile	Barcode	SDK	for	Android	(v2.1.x)	;	ver:	2.7.x 6	/	41

Mobile	Device	Aiming

Unlike	purpose-built	scanners,	mobile	devices	do	not	have	a	built-in	aimer.	Barcode
aiming	is	generally	accomplished	by	providing	a	live-stream	preview	from	the	camera	on
the	mobile	device	display.	The	user	can	then	reposition	the	device	until	the	barcode
appears	in	the	fie ld	of	view	and	is	decoded.

The	cmbSDK	simplifies	this	task	by	providing	a	built-in	preview	control	that	can	be
displayed	fullscreen,	partial	screen,	and	in	either	portrait	or	landscape	orientation.

The	cmbSDK	also	supports	"passive"	aimers:	devices	that	attach	to	the	mobile	device	or
its	case	that	use	the	LED	flash	of	the	device	as	a	light	source	to	project	an	aiming	or
targeting	pattern.	The	advantage	of	these	aimers	is	that	an	on-screen	preview	is	no
longer	required,	as	the	mobile	device	can	project	an	aimer	pattern	similar	to	a	purpose-
built	scanner.	However,	note	that	using	the	LED	flash	for	general	scanning	illumination	is
not	available	because	the	mobile	device	flash	is	used	for	the	aimer.

Mobile	Device	Orientat ion

Mobile	devices	support	developing	applications	for	e ither	portrait	orientation,	landscape
orientation,	or	auto-rotation	between	the	two.	The	cmbSDK	fully	supports	all	three	options
for	both	the	presentation	of	the	barcode	preview	as	well	as	the	scan	direction.	Most
barcodes	can	be	scanned	by	a	mobile	device	regardless	of	the	orientation	of	the
application	and/or	the	mobile	device.

For	scanning	"square"	barcodes	like	QR,	Data	Matrix,	and	MaxiCode,	any	orientation	can
be	used.	However,	for	scanning	long	or	dense	barcodes	like	a	large	PDF417,	using
landscape	orientation	is	recommended	or	even	necessary.	Mobile	cameras	have	a	higher
resolution	along	the	"height"	of	the	image	in	portrait	mode.	For	example,	1280x720	is	a
commonly	used	resolution.	This	means	that	scanning	barcodes	using	portrait	orientation
provides	720	pixels	of	data	along	the	horizontal	axis,	while	landscape	orientation
provides	1280	pixels	on	the	horizontal	scan	line	for	barcode	decoding.

	

Mobile	Device	Performance

With	multi-core	CPUs	and	dedicated	image	processors,	today's	handheld	devices	have
significant	computing	power	and	provide	an	ideal	platform	for	efficient		and	cost-effective
barcode	decoding.	It	is	still	recommended	for	developers	to	optimize	their	barcode
scanning	applications.	The	cmbSDK	is	optimized	specifically	for	mobile	environments,	but
image	analysis	and	barcode	decoding	is	still	a	CPU	intensive	activity.	Since	these
processes	share	the	mobile	device's	CPU	with	the	operating	system,	services,	and	other
applications,	developers	are	advised	to	limit	their	applications	to	only	using	the	features
of	the	SDK	that	they	need.

t it le:	Cognex	Mobile	Barcode	SDK	for	Android	(v2.1.x)	;	ver:	2.7.x 7	/	41

Application	optimizations	include	the	following:

Enable	decoding	only	for	the	barcode	types	the	application	needs	to	scan.The
cmbSDK	supports	the	decoding	of	almost	40	different	barcode	types	and	subtypes,
and	while	you	can	enable	all	of	these,	it	can	negatively	impact	performance	and
introduce	unexpected	errors
More	enabled	symbologies	can	lead	to	slower	performance	and	sluggish	decoding,
leaving	the	user	with	an	inaccurate	impression	of	the	SDK’s	capabilities.
False	reads	are	possible,	especially	when	some	of	the	weaker	symbologies,	like	Code
25,	are	enabled	without	proper	consideration	and	configuration	of	more	advanced
features.	Advanced	features	like	minimum	code	length	and	barcode	location	reduce
false	reads	with	the	weak	symbologies,	but	they	also	reduce	performance,	as	they
are	not	intended	to	be	enabled	and	used	at	the	same	time.		
Using	an	optimal	camera	resolution.	By	default,	the	cmbSDK	uses	HD	images
(typically	1280x720)	for	barcode	decoding.	This	resolution	is	sufficient	for	most
barcodes,	unless	they	are	very	small	or	dense.	You	can	use	a	higher,	full	HD
resolution,	but	these	images	are	significantly	larger,	and	thus	require	more	time	to
analyze	and	decode.	
Using	an	appropriate	decoder	effort	level.The	SDK	has	a	user-configurable	effort	level
that	controls	how	aggressively	the	SDK	performs	image	analysis.	Like	most	other
settings,	the	SDK	uses	a	default	value	(level	2)	that	is	sufficient	for	most	barcodes.
Using	a	higher	level	can	result	in	better	decoding	of	poorer	quality	barcodes,	but	at
the	price	of	slower	performance.

For	these	reasons,	when	the	cmbSDK	is	initialized	for	use	with	the	the	mobile	device's
built-in	camera,	no	barcode	symbologies	are	enabled	by	default,	and	the	application	must
only	enable	the	symbologies	it	needs.	As	most	barcode	scanning	applications	only	need
to	scan	a	handful	of	symbologies,	this	behavior	encourages	the	developer	to	use	the
SDK	in	an	efficient	manner.

	

	

cmbSDK	for	Android

Gett ing	Started

Note:	cmbSDK	is	compatible	with	Android	Studio.

Perform	the	following	steps	to	install	the	Android	cmbSDK:

1.	 Download	the	Cognex	Mobile	Barcode	SDK	for	Android.
2.	 Start	Android	Studio	and	add	SDK	AAR	file 	as	module	to	your	project:

t it le:	Cognex	Mobile	Barcode	SDK	for	Android	(v2.1.x)	;	ver:	2.7.x 8	/	41

Right	click	your	app	module,	select	New	>	Module	>	Import 	.JAR/.AAR
Package,	and	click	Next .
Browse	the	SDK	.AAR	file 	in	the	File	name	fie ld	and	click	Finish.
After	the	new	module	is	available,	right	click	your	app	module	again,	select
Open	Module	Set t ings,	and	choose	Dependencies	tab.
Click	the	+	sign	on	the	bottom	of	the	dialog	and	select	3	Module
dependency.
Select	cmbsdklib	from	the	popup	and	click	OK.
The	cmbsdklib	module	should	be	available	now	under	the	Dependencies	tab.

3.	 To	communicate	with	MX	readers,	install	MX	Connect	app	from	Play	Store	on	your
mobile	device.

t it le:	Cognex	Mobile	Barcode	SDK	for	Android	(v2.1.x)	;	ver:	2.7.x 9	/	41

Note:	Please	uninstall	all	other	applications	that	connect	to	the	MX	reader	with
previous	versions	of	the	SDK.	Update	the	QuickSetup	application	to	latest	version.

Licensing	the	SDK

If	you	plan	to	use	the	cmbSDK	to	do	mobile	scanning	with	a	smartphone	or	tablet	(with	no
MX	mobile	terminal),	then	the	SDK	requires	the	installation	of	a	license	key.	Without	a
license	key,	the	SDK	will	still	operate,	although	scanned	results	will	be	obfuscated	(the
SDK	will	randomly	replace	characters	in	the	scan	result	with	an	asterisk	character).	

Contact	your	Cognex	Sales	Representative	for	information	on	how	to	obtain	a	license	key
including	trial	licenses	which	can	be	used	for	30	days	to	evaluate	the	SDK.

After	obtaining	your	license	key,	add	the	following	line	in	your	application's
AndroidManifest.xml	file ,	under	the	application	tag:	

<meta-data	android:name="MX_MOBILE_LICENSE"	android:value="YOUR_MX_MOBILE_LICENSE"/>

Next,	put	your	key	in	place	of	YOUR_MX_MOBILE_LICENSE.	

<application	
android:allowBackup="true"	
android:icon="@drawable/ic_launcher"	
android:label="@string/app_name"	
android:theme="@style/AppTheme"	>	
<activity
android:name=".ScannerActivity"	
android:label="@string/app_name"	>	
<intent-filter>
<action	android:name="android.intent.action.MAIN"	/>

<category	android:name="android.intent.category.LAUNCHER"	/>	
</intent-filter>
</activity>

<meta-data
android:name="MX_MOBILE_LICENSE"	
android:value="g/9ytJzcja+sxt4DTEDxR4hp6sZh9bmL97vUx+EE9uY="	/>

</application>

The	second	way	to	add	the	license	key	is	explained	in	the	example	below:

t it le:	Cognex	Mobile	Barcode	SDK	for	Android	(v2.1.x)	;	ver:	2.7.x 10	/	41

//	init	connection	to	Phone	Camera
												case	1:
																readerDevice	=	ReaderDevice.getPhoneCameraDevice(this,
																								CameraMode.NO_AIMER,	PreviewOption.DEFAULTS,
																								rlPreviewContainer,"SDK_KEY");

	

Migrat ing	from	a	Previous	DataMan	SDK	for	MX	Readers

Previous	SDK	versions	accessed	the	MX	mobile	terminal	via	direct	USB	Device	or	USB
Accessory	connection.	These	methods	are	now	deprecated,	and	you	should	connect	to	an
MX	mobile	terminal	using	the	MXConnect	application.	(See	Step	4	.)

The	cmbSDK	provides	an	easy	factory	method,
DataManSystem.createDataManSystemForMXDevice()	to	create	a	DataManSystem	for
the	MX	mobile	terminal	over	the	MXConnect	application.

Please	remove	any	DataManSystem.createDataManSystemOverUsb()	and
DataManSystem.createDataManSystemOverUsbAccessory()	methods	from	your	project,
and	also	remove	the	USB_	DEVICE-ATTACHED	and	USB_ACCESSORY_ATTACHED	Intent
filters	and	meta-data	from	the	AndroidManifest.xml	file .

You	can	also	delete	the	USB	and	accessory	descriptor	xml	files	from	the	XML	folder.	You
can	also	use	and	migrate	to	Barcode	SDK	to	access	the	MX	mobile	terminal.	

Writ ing	a	Mobile	Applicat ion

The	cmbSDK	has	been	designed	to	provide	a	high-level,	abstract	interface	for	supported
scanning	devices.	This	includes	not	only	the	MX	series	of	mobile	terminals,	but	also	for
applications	that	intend	to	use	the	mobile	device	camera	as	the	imaging	device.	The
intricacies	of	communicating	with	and	managing	these	devices	is	encapsulated	within	the
SDK	itself:	leaving	the	application	to	just	connect	to	the	device	of	choice,	then	using	it.

The	primary	interface	between	your	application	and	a	supported	barcode	scanning	device
is	the	ReaderDevice	class.	This	class	represents	the	abstraction	layer	to	the	device	itself,
handling	all	communication	as	well	as	any	necessary	hardware	management	(e.g.	for
smartphone	scanning).	

Perform	the	following	steps	to	use	the	cmbSDK:	

1.	 Initialize	a	Reader	Device	for	the	type	of	device	you	want	to	use	(MX	reader	or
camera	reader).

2.	 Connect	the	Reader	Device.

https://cmbdn.cognex.com/v2.1.x/knowledge/cognex-mobile-barcode-sdk-for-android#cmbsdk-for-android/getting-started

t it le:	Cognex	Mobile	Barcode	SDK	for	Android	(v2.1.x)	;	ver:	2.7.x 11	/	41

3.	 Configure	the	reader	(if	necessary).

4.	 Start	scanning.	

Initialization,	connection,	and	configuration	generally	need	to	be	performed	only	once	in
your	application	except	for	the	following	cases:	

An	MX	reader	may	become	disconnected	(times	out	from	disuse,dead	battery,	etc.).	A
method	has	been	provided	to	handle	this	case,	and	is	discussed	in	a	later	section.
Your	application	has	been	designed	to	allow	the	user	to	change	devices.The	cmbSDK
is	explicitly	designed	to	support	this:	your	application	simply	disconnects	from	the
current	device	and	establishes	a	new	connection	to	a	different	device.	The	provided
sample	application	has	been	written	to	explicitly	demonstrate	this	capability.	

Sett ing	up	your	Applicat ion	to	use	the	Cognex	Mobile	Barcode	SDK
for	Android

Perform	the	following	steps	to	set	up	and	start	using	the	cmbSDK:

1.	 Import	the	following	package	members:

import	com.cognex.dataman.sdk.CameraMode;
import	com.cognex.dataman.sdk.ConnectionState;
import	com.cognex.dataman.sdk.PreviewOption;
import	com.cognex.mobile.barcode.sdk.ReadResult;
import	com.cognex.mobile.barcode.sdk.ReadResults;
import	com.cognex.mobile.barcode.sdk.ReaderDevice;
import	com.cognex.mobile.barcode.sdk.ReaderDevice.Availability;
import	com.cognex.mobile.barcode.sdk.ReaderDevice.OnConnectionCompletedListener;
import	com.cognex.mobile.barcode.sdk.ReaderDevice.ReaderDeviceListener;
import	com.cognex.mobile.barcode.sdk.ReaderDevice.Symbology;

2.	 Provide	needed	UI	e lements:

ViewGroup	container	(like	Relat iveLayout)	for	the	camera	preview

ImageView	nested	inside	theViewGroup	container	with	matching	size	as	its	parent
for	showing	the	last	frame	of	a	preview	or	scanning	session:

The	below	examples	use	the	following:

t it le:	Cognex	Mobile	Barcode	SDK	for	Android	(v2.1.x)	;	ver:	2.7.x 12	/	41

private	RelativeLayout	rlPreviewContainer;	
private	ImageView	ivPreview;

3.	The	following	interfaces	are	necessary	to	monitor	the	connection	state	of	the	reader
and	receive	information	about	the	read	code:

public	class	ScannerActivity	extends	Activity	implements	OnConnectionCompletedListener,	ReaderDevice
Listener	{
....
@Override
public	void	onConnectionCompleted(ReaderDevice	reader,	Throwable	error)	{
if	(error	!=	null)	{
//	READER	DISCONNECTED	(ERROR	OCCURED)
}	}
@Override
public	void	onConnectionStateChanged(ReaderDevice	reader)	{
if	(reader.getConnectionState()	==	ConnectionState.Connected)	{	//	READER	CONNECTED
}	else	if	(reader.getConnectionState()	==	ConnectionState.Disconnected)	{	//	READER	DISCONNECTED
}	}
@Override
public	void	onReadResultReceived(ReaderDevice	reader,	ReadResults	results)	{
if	(results.getCount()	>	0)	{
ReadResult	result	=	results.getResultAt(0);
//	USE	String	symbologyName;	String	code;	Bitmap	frame;	VARIABLES	IN	YOUR	APPLICATION
if	(result.isGoodRead())	{
String	symbologyName;
String	code	=	result.getReadString();
Symbology	symbology	=	result.getSymbology();	if	(symbology	!=	null)	{
symbologyName	=	symbology.getName();
tvSymbology.setText(symbologyName);	}	else	{
tvSymbology.setText("UNKNOWN	SYMBOLOGY");	}
tvCode.setText(code);	}	else	{
tvSymbology.setText("NO	READ");
tvCode.setText("");	}
Bitmap	frame	=	result.getImage();
ivPreview.setImageBitmap(frame);	}
//	READY	TO	SCAN	AGAIN	}
@Override
public	void	onAvailabilityChanged(ReaderDevice	reader)	{
if	(reader.getAvailability()	==	Availability.AVAILABLE)	{	//	READER	DEVICE	IS	AVAILABLE	AND	CAN	BE	C
ONNECTED
}	else	{
//	DISCONNECT	DEVICE
}	}
....	}

4.	Instantiate	a	ReaderDevice	object.

The	cmbSDK	provides	two	different	reader	class	initializers:	one	for	scanning	using	an	MX
mobile	terminal	(like	the	MX-	1000	or	MX-1502)	and	another	for	scanning	using	the	built-in
camera	of	the	mobile	device	(Android	Phones,	Android	Tablets,	etc.).

t it le:	Cognex	Mobile	Barcode	SDK	for	Android	(v2.1.x)	;	ver:	2.7.x 13	/	41

Using	the	MX	Reader

Initialize	a	Reader	Device	object	for	MX	readers	using	the	following	factory	method:	

boolean	listeningForUSB	=	false;

ScannerActivity.readerDevice	=	ReaderDevice.getMXDevice(ScannerActivity.this);	if	(!listeningForUSB)
	{

readerDevice.startAvailabilityListening();
listeningForUSB	=	true;	
}

The	availability	of	the	MX	mobile	terminal	can	change	when	the	device	turns	ON	or	OFF,
or	if	the	USB	cable	gets	connected	or	disconnected.	You	can	handle	those	changes	using
the	following	ReaderDeviceListener	interface	method	(implemented	in	Step	3	above):	

public	void	onAvailabilityChanged(ReaderDevice	reader);

	

Using	the	Camera	Reader

Barcode	scanning	with	the	built-in	camera	of	the	mobile	device	can	be	more	complex
than	with	an	MX	mobile	terminal.	The	cmbSDK	supports	several	configurations	to	provide
the	maximum	flexibility.	This	includes	the	support	of	optional,	external
aimers/illumination,	as	well	as	the	ability	to	customize	the	appearance	of	the	live-stream
preview.

To	scan	barcodes	using	the	built-in	camera	of	the	mobile	device,	initialize	the
ReaderDevice	object	using	the	getPhoneCameraDevice	static	method.	The	camera
reader	has	several	options	when	initialized.	The	following	parameters	are	required:

Context
CameraMode
PreviewOption
ViewGroup

The	Context	parameter	simply	provides	a	reference	to	the	activity	you	are	currently	in.
The	CameraMode	parameter	is	of	type	CameraMode	(defined	in	CameraMode.java)
and	it	accepts	one	of	the	following	values:

https://cmbdn.cognex.com/v2.1.x/knowledge/cognex-mobile-barcode-sdk-for-android#cmbsdk-for-android/setting-up-your-application-to-use-the-cognex-mobile-barcode-sdk-for-android

t it le:	Cognex	Mobile	Barcode	SDK	for	Android	(v2.1.x)	;	ver:	2.7.x 14	/	41

NO_AIMER:	This	initializes	the	reader	to	use	a	live-stream	preview	(on	the	mobile
device	screen)so	the	user	can	position	the	barcode	within	the	camera’s	fie ld	of	view
for	detection	and	decoding.	Use	this	mode	when	the	mobile	device	does	not	have	an
aiming	accessory.

PASSIVE_AIMER:	This	initializes	the	reader	to	usea	passive	aimer,	which	is	an
accessory	that	is	attached	to	the	mobile	device	or	mobile	device	case	that	uses	the
built-in	LED	flash	of	the	mobile	device	as	a	light	source	for	projecting	an	aiming
pattern.	In	this	mode,	no	live-stream	preview	is	presented	on	the	device	screen,
since	an	aiming	pattern	will	be	projected.

FRONT_CAMERA:	This	initializes	the	reader	to	use	the	mobile	front	facing	camera	of
the	device,	if	available	(not	all	mobile	devices	have	a	front	camera).	This	is	an
unusual,	but	possible	configuration.	Most	front	facing	cameras	do	not	have	auto	focus
and	illumination,	and	provide	significantly	lower	resolution	images.	This	option	should
be	used	with	care.	In	this	mode,	illumination	is	not	available.

All	of	the	above	modes	provide	the	following	default	settings	for	the	reader:

The	rear	camera	is	used.
The	zoom	feature	is	available	and	a	button	to	control	it	is	visible	on	the	live-stream
preview	(if	displayed).
The	simulated	hardware	trigger	is	disabled.
When	start	Scanning()	is	called,the	decoding	process	is	started.	(See
PreviewOption.PAUSED	below	for	more	details).

Based	on	the	selected	mode,	the	following	additional	options	and	behaviors	are	set:

NO_AIMER	(NoAimer)

The	live-stream	preview	is	displayed	when	the	startScanning()	method	is	called.
Illumination	is	available,	and	a	button	to	control	it	is	visible	on	the	live-stream
preview.
If	commands	are	sent	to	the	reader	for	aimer	control,	they	will	be	ignored.

PASSIVE_AIMER	(Passive	Aimer)

The	live-stream	preview	will	not	be	displayed	when	the	startScanning()	method	is
called.
Illumination	is	not	available,	and	the	live-stream	preview	will	not	have	an
illumination	button.
If	commands	are	sent	to	the	reader	for	illumination	control,	they	will	be	ignored,
since	it	is	assumed	in	this	mode	that	the	built-in	LED	of	the	mobile	device	is	being
used	for	the	aimer.

FRONT_CAMERA	(FrontCamera)

t it le:	Cognex	Mobile	Barcode	SDK	for	Android	(v2.1.x)	;	ver:	2.7.x 15	/	41

The	live-stream	preview	is	displayed	when	the	startScanning()	method	is	called.
The	front	camera	is	used.
Illumination	is	not	available	and	the	live-stream	preview	will	not	have	an
illumination	button.
If	commands	are	sent	to	the	reader	for	aimer	or	illumination	control,	they	will	be
ignored.

The	PreviewOption	parameter	is	of	type 	PreviewOption	(defined	in
PreviewOpt ion.java),	and	is	used	to	change	the	reader’s	default	values	or	override
defaults	derived	from	the	selected	CameraMode.	Multiple	options	can	be	specified	by	OR-
ing	them	when	passing	the	parameter.	The	available	options	are:

DEFAULTS:	Use	this	option	to	accept	all	defaults	set	by	the	CameraMode.
NO_ZOOM_BUTTON:	This	hides	the	zoom	button	on	the	live-stream	preview,
preventing	a	user	from	adjusting	the	mobile	device	camera’s	zoom.
NO_ILLUMINATION_BUTTON:	This	hides	the	illumination	button	on	the	live-stream
preview,	preventing	a	user	from	toggling	the	illumination.
HARDWARE_TRIGGER:	This	enables	a	simulated	hardware	trigger	(the	volume	down
button)	for	starting	scanning	on	the	mobile	device.	This	button	only	starts	scanning
when	pressed.	Iit	does	not	need	to	be	held	like	a	more	traditional	purpose-built
scanner’s	trigger.	Pressing	the	button	a	second	time	does	not	stop	the	scanning
process.
PAUSED:	If	using	a	live-stream	preview,	when	this	option	is	set,	the	preview	will	be
displayed	when	the	startScanning()	method	is	called,	but	the	reader	will	not	started
decoding	(i.e.	looking	for	barcodes)	until	the	user	presses	the	on-screen	scanning
button	to	actually	start	the	scanning	process.
ALWAYS_SHOW:	This	option	forces	a	live-stream	preview	to	be	displayed,	even	if	an
aiming	mode	has	been	selected	(e.g.	CameraMode	==	PASSIVE_AIMER)
HIGH_RESOLUTION:	This	will	use	the	device	camera	in	higher	resolution.	The	default
resolution	is	1280x720.	With	this	option	is	enabled,	the	resolution	will	be	1920x1080
on	devices	that	support	it,	and	the	default	one	on	devices	that	do	not.	This	can	help
with	scanning	small	barcodes,	but	will	increase	the	decoding	time	since	there	is	a	lot
more	data	to	process	in	each	frame.
HIGH_FRAME_RATE:	This	will	use	the	device	camera	in	60	FPS	instead	of	the	default
30,	and	provide	a	much	smoother	camera	preview.

The	last	parameter	of	the	ViewGroup	type	specifies	the	container	for	the	live-stream
preview.	If	the	parameter	is	left	null,	a	full	screen	preview	will	be	used.

Examples

Create	a	reader	with	no	aimer,	no	zoom	button,	and	using	a	soft	trigger:

ScannerActivity.readerDevice	=	ReaderDevice.getPhoneCameraDevice(ScannerActivity.this,
CameraMode.NO_AIMER,
PreviewOption.NO_ZOOM_BUTTON	|	PreviewOption.PAUSED,	rlPreviewContainer);

t it le:	Cognex	Mobile	Barcode	SDK	for	Android	(v2.1.x)	;	ver:	2.7.x 16	/	41

This	starts	a	preview	with	the	scanner	paused	and	a	soft	trigger	button	to	toggle
scanning.	After	pressing	the	soft	trigger	button,	the	rlPreviewContainer	should	look	like
this:

The	viewfinder	in	the	above	image	has	an	active	scanning	surface,	a	result	of	having	set
active	symbologies.	For	more	details	on	this	topic,	see	Configuring	the	Reader	Device).

Request ing	Camera	permission	for	Phone	Camera	Scanner

From	Android	6.0	and	above	you	need	to	request	permission	from	the	user	to	access	the
phone	camera.
If	the	phone	camera	cannot	be	opened	due	to	permission	issues	the
onConnectionCompleted(readerDevice,	error)	callback	contains	a
CameraPermissionException	in	the	error	parameter.
You	can	check	for	this	exception	type	with	the	instanceof	operator	and	request
permission	within	the	Activity.

if	(error	instanceof	CameraPermissionException)
						ActivityCompat.requestPermissions(((ScannerActivity)	this),	new	String[]{Manifest.permission.C
AMERA},	REQUEST_PERMISSION_CODE);

Please	note,	that	you	need	to	implement
ActivityCompat.OnRequestPermissionResultCallback	interface	in	your	Activity	to	catch
user	permission	result.
To	handle	user	response	in	onRequestPermissionResult(…),	you	may	use	the	following
code	to	retry	connecting	to	the	PhoneCamera.

@Override
public	void	onRequestPermissionsResult(int	requestCode,	@NonNull	String[]	permissions,	@NonNull	int[

https://cmbdn.cognex.com/v2.1.x/knowledge/cognex-mobile-barcode-sdk-for-android#cmbsdk-for-android/connecting-to-the-device

t it le:	Cognex	Mobile	Barcode	SDK	for	Android	(v2.1.x)	;	ver:	2.7.x 17	/	41

]	grantResults)	{
				if	(requestCode	==	REQUEST_PERMISSION_CODE)	{
								if	(grantResults.length	>	0	&&	grantResults[0]	==	PackageManager.PERMISSION_GRANTED)	{
												if	(readerDevice	!=	null	&&	readerDevice.getConnectionState()	!=	ConnectionState.Connect
ed)
																readerDevice.connect(ScannerActivity.this);
								}	else	{
												if	(ActivityCompat.shouldShowRequestPermissionRationale(((ScannerActivity)	this),	Manife
st.permission.CAMERA))	{
																AlertDialog.Builder	builder	=	new	AlertDialog.Builder(this)
																								.setMessage("You	need	to	allow	access	to	the	Camera")
																								.setPositiveButton("OK",	new	DialogInterface.OnClickListener()	{
																												@Override
																												public	void	onClick(
																																				DialogInterface	dialogInterface,
																																				int	i)	{
																																ActivityCompat.requestPermissions(ScannerActivity.this,	new	String[]
{Manifest.permission.CAMERA},	REQUEST_PERMISSION_CODE);
																												}
																								})
																								.setNegativeButton("Cancel",	null);
																AlertDialog	dialog	=	builder.create();
																dialog.show();
												}
								}
				}
}

Connect ing	to	the	Device

Before	connecting,	set	the	ReaderDeviceListener	object	to	receive	events:	

readerDevice.setReaderDeviceListener(ScannerActivity.this);

See	Step	3	for	details.

Additionally,	you	can	enable	sending	the	last	triggered	image	and	SVG	from	the	reader:	

readerDevice.enableImage(true);
readerDevice.enableImageGraphics(true);

After	initializ ing	the	ReaderDevice	and	setting	a	listener	method	to	handle	responses
from	the	reader,	the	connect	method	can	be	invoked,	which	takes	a
OnConnectionCompletedListener	(see	Step	3		for	details)	as	parameter:	

https://cmbdn.cognex.com/v2.1.x/knowledge/cognex-mobile-barcode-sdk-for-android#cmbsdk-for-android/setting-up-your-application-to-use-the-cognex-mobile-barcode-sdk-for-android
https://cmbdn.cognex.com/v2.1.x/knowledge/cognex-mobile-barcode-sdk-for-android#cmbsdk-for-android/setting-up-your-application-to-use-the-cognex-mobile-barcode-sdk-for-android

t it le:	Cognex	Mobile	Barcode	SDK	for	Android	(v2.1.x)	;	ver:	2.7.x 18	/	41

	//Make	sure	the	device	is	turned	ON	and	ready
readerDevice.connect(ScannerActivity.this);

If	everything	was	done	correctly,	the	following	listener	methods	are	called	with	the	new
ReaderDevice	status	information.	The	onConnectionCompleted	method	(passed	as
parameter	of	connect)	is	also	invoked	as	the	connection	process	completes,	providing	a
Throwable	object,	if	there	was	a	connection	error.	

	public	void	onConnectionStateChanged(ReaderDevice	reader);
public	void	onConnectionCompleted(ReaderDevice	reader,	Throwable	err

Act ivate	scanning	

readerDevice.startScanning();

You	can	stop	scanning	with	the	following:	

readerDevice.stopScanning();

The	onReadResultReceived	listener	method	(see	Step	3)	is	invoked	as	a	barcode	was
decoded	by	the	reader,	or	the	scanning	process	has	finished.	

Configuring	the	Reader	Device

After	connecting	to	the	scanning	device,	you	may	want	(or	need)	to	change	some	of	its
settings.	The	cmbSDK	provides	a	set	of	high-level,	device	independent	APIs	for	setting
and	retrieving	the	current	configuration	of	the	device.

Like	in	the	case	of	initializ ing	the	Reader	Device,	there	are	some	differences	between
using	an	MX	reader	and	the	camera	reader	for	scanning.	These	differences	are	detailed
in	the	following	sections.	

MX	Mobile	Terminals

The	MX	family	of	mobile	terminals	provides	sophisticated	device	configuration	and
management,	including	saved	configurations	on	the	device	itself.	In	general,	these
devices	come	from	Cognex	preconfigured	for	an	exceptional	out-of-	the-box	experience

https://cmbdn.cognex.com/v2.1.x/knowledge/cognex-mobile-barcode-sdk-for-android#cmbsdk-for-android/setting-up-your-application-to-use-the-cognex-mobile-barcode-sdk-for-android

t it le:	Cognex	Mobile	Barcode	SDK	for	Android	(v2.1.x)	;	ver:	2.7.x 19	/	41

with	most	symbologies	and	features	ready	to	use.

When	custom	reconfiguration	is	desired,	this	is	typically	done	using	either	the	DataMan
Setup	Tool,	or	the	Cognex	Quick	Setup	as	these	tools	can	be	used	to	distribute	saved
configurations	easily	to	multiple	devices,	thereby	greatly	simplifying	configuration
management.

However,	it	is	still	possible	(and	sometimes	desirable)	for	the	mobile	application	itself	to
configure	the	MX	device:

You	can	have	multiple	scanning	applications,	each	of	which	requires	a	different	set	of
device	settings.
You	may	simply	want	to	guarantee	that	the	certain	options	are	in	a	“known”	state	and
not	rely	on	the	fact	that	the	device	has	been	preconfigured	correctly.	

Built -in	Camera

Much	like	an	MX	mobile	terminal,	the	cmbSDK	employs	a	default	set	of	options	for
barcode	reading	with	the	built-in	camera	of	the	mobile	device,	providing	a	good	out-of-
box	experience.	However,	there	are	two	important	differences	to	keep	in	mind:	

The	cmbSDK	does	not	implement	saved	configurations	for	the	camera	reader.	This
means	that	every	time	an	application	that	uses	the	camera	reader	starts,	it	starts	with
its	defaults.	

The	cmbSDK	does	not	enable	any	symbologies	by	default:	you	as	the	application
programmer	must	enable	all	barcode	symbologies	your	application	needs	to	scan.	By
requiring	the	application	program	to	explicitly	enable	only	the	symbologies	it	needs,
the	most	optimal	scanning	performance	can	be	achieved.	This	concept	was	more
thoroughly	discussed	in	the	Overview	section.	

	

Enabling	Symbologies

Individual	symbologies	can	be	enabled	using	the	following	method	of	the	Reader	Device
object:	

public	void	setSymbologyEnabled(final	Symbology	symbology,	final	boolean	enable,	final	OnSymbologyLi
stener	listener)
readerDevice.setSymbologyEnabled(Symbology.DATAMATRIX,	true,	null);
readerDevice.setSymbologyEnabled(Symbology.UPC_EAN,	true,	null);

https://cmbdn.cognex.com/v2.1.x/knowledge/cognex-mobile-barcode-sdk-for-android#overview

t it le:	Cognex	Mobile	Barcode	SDK	for	Android	(v2.1.x)	;	ver:	2.7.x 20	/	41

All	symbologies	used	for	the	symbology	parameter	in	this	method	can	be	found	in
ReaderDevice.java.	

Examples	

	/*	Enable	QR	scanning	*/
readerDevice.setSymbologyEnabled(Symbology.QR,	true,	null);

The	same	method	can	also	be	used	to	turn	symbologies	off:	

/	*	Disable	Code	25	scanning	*/	readerDevice.setSymbologyEnabled(Symbology.C25,	false,	null);

You	can	implement	the	method	for	OnSymbologiesListener:	

@Override
public	void	onSymbologyEnabled(ReaderDevice	reader,	Symbology	symbology,	Boolean	enabled,	Throwable	
error)	{
if	(error	!=	null)	{
/*	Unsuccessful
probably	the	symbology	is	unsupported	by
the	current	device,	or	there	is	a	problem	with	the	connection	between
the	readerDevice	and	MX	device
*/
}	else	{
//	Success	}
}

	

Illuminat ion	Control

If	your	reader	device	is	equipped	with	illumination	lights	(e.g.	LEDs),	you	can	control
whether	they	are	ON	or	OFF	when	scanning	starts	using	the	following	method	of	your
Reader	Device	object:	

readerDevice.setLightsOn(true,	null);

Optionally,	you	can	implement	the	interface	method	for	OnLightsListener,	which	is	the
second	parameter	of	the	method.	

t it le:	Cognex	Mobile	Barcode	SDK	for	Android	(v2.1.x)	;	ver:	2.7.x 21	/	41

public	class	ScannerActivity	extends	Activity	implements	OnLightsListener	{
@Override
public	void	onLightsOnCompleted(ReaderDevice	reader,	Boolean	on,	Throwable	error)	{
if	(error	!=	null)	{	//	Unsuccessful
}	else	{
//	Success	}
}	}

Keep	in	mind	that	not	all	devices	and	device	modes	supported	by	the	cmbSDK	allow	for
illumination	control.	For	example,	if	using	the	built-in	camera	in	passive	aimer	mode,
illumination	is	not	available	since	the	LED	is	being	used	for	aiming.	

Camera	Zoom	Sett ings

If	built-in	camera	is	used	as	reader	device	you	have	the	possibility	to	configure	zoom
levels	and	define	the	way	these	zoom	levels	are	used.

There	are	3	zoom	levels	for	the	phone	camera,	which	are:

normal:	not	zoomed	(100%)
level	1	zoom	(default	150%	on	Android)
level	2	zoom	(default	300%	on	Android)

You	can	define	these	zoom	levels	with	"SET	CAMERA.ZOOM-PERCENT	[100-MAX]	[100-
MAX]"	command.	It	configures	how	far	the	two	levels	will	zoom	in	percentage.	100	is
without	zoom,	and	MAX	(goes	up	to	1000)	will	zoom	as	far	as	the	device	is	capable	of.
First	argument	is	used	for	setting	level	1	zoom,	and	the	second	for	level	2	zoom.

When	you	want	to	check	current	setting,	you	can	do	this	with	the	"GET	CAMERA.ZOOM-
PERCENT"	that	returns	two	values:	level	1	and	level	2	zoom.

Example

readerDevice.getDataManSystem().sendCommand("SET	CAMERA.ZOOM-PERCENT	250	500");

Note:	Camera	needs	to	be	started	within	SDK	at	least	once	to	have	a	valid
maximum	zoom	level.	It	means	that	if	you	set	the	zoom	level	to	1000	and	the	device
can	go	up	to	600	only,	"GET	CAMERA.ZOOM-PERCENT"	command	returns	1000		as	long
as	camera	is	not	opened	(e.g.	with	startScanning),	but	it	returns	600	afterwards.

There	is	another	command	that	sets	which	zoom	level	you	want	to	use	or	returns	the
actual	setting:	"GET/SET	CAMERA.ZOOM	0-2".

Possible	values	for	the	SET	command	are:

t it le:	Cognex	Mobile	Barcode	SDK	for	Android	(v2.1.x)	;	ver:	2.7.x 22	/	41

0	-	normal	(un-zoomed)
1	-	zoom	at	level	1
2	-	zoom	at	level	2

You	can	call	this	command	before	scanning	or	even	during	scanning,	the	zoom	goes	up	to
the	level	that	was	configured.

If	the	scanning	is	finished,	the	values	is	reset	to	normal	behavior	(0).

Example

readerDevice.getDataManSystem().sendCommand("SET	CAMERA.ZOOM	2");

	

Resett ing	the	Configurat ion

The	cmbSDK	includes	a	method	for	resetting	the	device	to	its	default	settings.	In	the
case	of	an	MX	mobile	terminal,	this	is	the	configuration	saved	by	default	(not	the	factory
defaults),	while	in	the	case	of	the	built-in	camera,	these	are	the	defaults	identified	in
Appendix	B,	where	no	symbologies	will	be	enabled.	This	method	is	the	following:	

readerDevice.resetConfig(null);

Being	an	async	method,	you	can	monitor	its	completion	using	OnResetConfigListener
interface	passed	as	an	optional	parameter	to	the	method.	

public	class	ScannerActivity	extends	Activity	implements	OnResetConfigListener	{
@Override
public	void	onResetConfigCompleted(ReaderDevice	reader,	Throwable	error)	{
if	(error	!=	null)	{	//	Unsuccessful
}	else	{
//	Success	}
}

	

Advanced	Configurat ion

https://cmbdn.cognex.com/wiki/cognex-mobile-barcode-sdk-for-android/appendix-b-camera-reader-defaults

t it le:	Cognex	Mobile	Barcode	SDK	for	Android	(v2.1.x)	;	ver:	2.7.x 23	/	41

Every	Cognex	scanning	device	implements	DataMan	Control	Commands	(DMCC),	a
method	for	configuring	and	controlling	the	device.	Virtually	every	feature	of	the	device
can	be	controlled	using	this	text	based	language.	The	API	provides	a	method	for	sending
DMCC	commands	to	the	device.	Commands	exist	both	for	setting	and	querying
configuration	properties.

Appendix	A	includes	the	complete	DMCC	reference	for	use	with	the	camera	reader.
DMCC	commands	for	other	supported	devices	(e.g.	the	MX-1000)	are	included	with	the
documentation	of	that	particular	device.
Appendix	B	provides	the	default	values	for	the	camera	reader’s	configuration	settings	as
related	to	the	corresponding	DMCC	setting.
The	following	examples	show	different	DMCC	commands	being	sent	to	the	device	for
more	advanced	configuration.

Examples	

//Change	the	scan	direction	to	omnidirectional	
readerDevice.getDataManSystem().sendCommand("SET	DECODER.1D-SYMBOLORIENTATION	0",	ScannerActivity.th
is);
//Change	live-stream	preview's	scanning	timeout	to	10	seconds	
readerDevice.getDataManSystem().sendCommand("SET	DECODER.MAX-SCAN-TIMEOUT	10",	ScannerActivity.this);

You	can	also	invoke	DMCC	query	commands	and	receive	their	response	in	the
OnResponseReceivedListener.onResponseReceived()	method.	

//Get	the	type	of	device	connected	readerDevice.getDataManSystem().sendCommand("GET	DEVICE.NAME",	ne
w	OnResponseReceivedListener()	{
@Override
public	void	onResponseReceived(DataManSystem	dataManSystem,	DmccResponse	dmccResponse)	{
if	(dmccResponse.getError()	!=	null)	{
//	Unsuccessful
Log.e("DMCC_ERR",	“GET	DEVICE.NAME	failed”,dmccResponse.getError());
}	else	{
//	Success	-	Use	the	following	result	fields:
//int	mResponseId	=	dmccResponse.getResponseId();	//String	mPayLoad	=	dmccResponse.getPayLoad();	//b
yte[]	mBinaryData	=	dmccResponse.getBinaryData();	}
});
}

	

Camera	Overlay	Customizat ion

When	using	Mobile	Camera,	cmbSDK	allows	you	to	see	the	Camera	Preview	inside	a
preview	container	or	in	full	screen.	This	preview	also	contains	an	overlay,	which	can	be
customized	in	many	ways.	The	cmbSDK	camera	overlay	is	built	from	buttons	for	zoom,

https://cmbdn.cognex.com/v2.1.x/knowledge/cognex-mobile-barcode-sdk-for-android#appendix-a-dmcc-for-the-camera-reader
https://cmbdn.cognex.com/v2.1.x/knowledge/cognex-mobile-barcode-sdk-for-android#appendix-b-camera-reader-defaults

t it le:	Cognex	Mobile	Barcode	SDK	for	Android	(v2.1.x)	;	ver:	2.7.x 24	/	41

flash	and	closing	the	scanner	(in	full	screen),	a	progress	bar	indicating	the	scan	timeout,
and	lines	on	the	corners	of	the	camera	preview.

To	use	the	legacy	camera	overlay,	which	was	used	in	the	cmbSDK	v2.0.x	and	the
ManateeWorks	SDK,	use	this	property	from	MWOverlay	before	initializ ing	the
readerDevice:

MWOverlay.overlayMode	=	MWOverlay.OverlayMode.OM_LEGACY;

The	LEGACY	overlay	has	limited	customizability,	so	it	is	preferred	to	use	the	CMB	overlay.

When	using	the	CMB	overlay,	you	can	copy	the	layout	files	found	in	the	Resources/layout
directory	into	your	project	and	modify	them	as	you	like.	The	files	are:
cmb_scanner_part ial_view.xml	used	when	the	scanner	is	started	inside	a	container
(partial	view),	and	cmb_scanner_view.xml	when	the	scanner	is	started	in	full	screen.
After	copying	the	layout	that	you	need	(or	both	layouts),		you	can	modify	them,	for
example	by	changing	the	sizes,	positions	or	color	of	the	views,	removing	views	and	even
add	your	own	views,	like	an	overlay	image.	The	views	that	are	used	by	the	cmbSDK
(zoom,	flash,	close	buttons,	the	view	used	for	drawing	lines	on	the	corners,	and	the
progress	bar)	are	accessed	by	the	sdk	using	the	android:tag	attribute,	so	if	you	can
change	everything	about	those	views,	make	sure	the	android:tag	attribute	remains
unchanged,	otherwise	the	cmbSDK	will	not	be	able	to	recognize	those	views	and
continue	to	function	as	if	those	views	were	removed.

Both	the	CMB	and	the	LEGACY	overlay	allow	you	to	change	the	images	used	on	the
zoom	and	flash	buttons.	To	do	that,	all	you	need	to	do	is	to	make	sure	your	images	have
the	same	name	as	the	ones	used	by	the	cmbSDK.	You	can	find	the	images	and	names
used	in	the	sdk	in	the	Resources/drawable-mdpi	and	drawable-hdpi	directories.	While
the	other	resolutions	are	optional,	these	two	must	contain	your	images	with	the	correct
names,	so	that	the	proper	images	will	be	displayed	by	the	cmbSDK.

Both	the	CMB	and	the	LEGACY	overlay	allow	you	to	change	the	color	and	width	of	the
rectangle	that	is	displayed	when	a	barcode	is	detected.	Here's	an	example	on	how	to	do
that:

MWOverlay.locationLineColor	=	Color.YELLOW;
MWOverlay.locationLineWidth	=	6;

	

Scanning	Barcodes

With	a	properly	configured	reader,	you	are	now	ready	to	scan	barcodes.	This	can	be	done
by	calling	the	startScanning	method	from	your	Reader	Device	object.

t it le:	Cognex	Mobile	Barcode	SDK	for	Android	(v2.1.x)	;	ver:	2.7.x 25	/	41

What	happens	next	is	based	on	the	type	of	Reader	Device	and	how	it	has	been
configured,	but	in	general:

If	using	an	MXreader,	the	user	can	now	press	a	trigger	button	on	the	device	to	turn
the	scanner	on	and	read	a	barcode.
If	using	the	camera	reader,	the	cmbSDK	starts	the	camera,	displays	the	configured
live-stream	preview,	and	begins	analyzing	the	frames	from	the	video	stream,	looking
for	a	configured	barcode	symbology.

Scanning	stops	under	one	of	the	following	conditions:

The	reader	found	and	decoded	a	barcode.
The	user	released	the	trigger	or	pressed	the	stop	button	on	the	live-stream	preview
screen.
The	camera	reader	timed	out	with	out	finding	a	barcode.
The	application	itself	calls	the	stopScanning()	method.

When	a	barcode	is	decoded	successfully	(the	first	case),	you	will	receive	a	ReadResults
iterable	result	collection	object	in	ReaderDevice	listener	method,	already	implemented	in
Step	3.

@Override
public	void	onReadResultReceived(ReaderDevice	reader,	ReadResults	results)	{
	if	(results.getCount()	>	0)	{
		ReadResult	result	=	results.getResultAt(0);

		//	USE	String	symbologyName;	String	code;	Bitmap	frame;	VARIABLES	IN	YOUR	APPLICATION

		if	(result.isGoodRead())	{
			String	symbologyName;
			String	code	=	result.getReadString();
			Symbology	symbology	=	result.getSymbology();	

			if	(symbology	!=	null)	{
				symbologyName	=	symbology.getName();
				tvSymbology.setText(symbologyName);	
			}	else	{
				tvSymbology.setText("UNKNOWN	SYMBOLOGY");
			}

			tvCode.setText(code);	
			
		}	else	{
			tvSymbology.setText("NO	READ");
			tvCode.setText("");
		}

		Bitmap	frame	=	result.getImage();
		ivPreview.setImageBitmap(frame);	
	}
//	READY	TO	SCAN	AGAIN	
}

https://cmbdn.cognex.com/v2.1.x/knowledge/cognex-mobile-barcode-sdk-for-android#cmbsdk-for-android/setting-up-your-application-to-use-the-cognex-mobile-barcode-sdk-for-android

t it le:	Cognex	Mobile	Barcode	SDK	for	Android	(v2.1.x)	;	ver:	2.7.x 26	/	41

In	the	above	example,	ivPreview	is	an	ImageView	used	to	display	an	image	of	the
barcode	that	was	scanned,	and	tvCode	is	a	TextView	used	to	show	the	result	from	the
barcode.	You	can	also	use	the	BOOL	from	result.isGoodRead()	to	check	whether	the	scan
was	successful	or	not.

Working	with	Results

When	a	barcode	is	successfully	read,	a	ReadResult	object	is	created	and	returned	by	the
onReadResultReceived	method.	In	case	of	having	multiple	barcodes	successfully	read	on
a	single	image/frame,	multiple	ReadResult	objects	are	returned	in	the	ReadResult	object.

The	ReadResult	class	has	properties	describing	the	result	of	a	barcode	read:

is	GoodRead()	(boolean)	:	te lls	whether	the	read	was	successful	or	not
get 	ReadSt ring()	(String):	the	decoded	barcode	as	a	string
get 	Image()	(Bitmap):	the	image/frame	that	the	decoder	has	processed
get 	ImageGraphics()	(String):	the	boundary	path	of	the	barcode	as	SVG	data
get 	Xml()	(String):	the	raw	XML	that	the	decoder	returned
get 	Symbology	(Symbology):	the	symbology	type	of	the	barcode.This	enum	is
defined	in	ReaderDevice.java.

When	a	scanning	ends	with	no	successful	read,	a	ReadResult	is	returned	with	the
goodRead	property	set	to	false.	This	usually	happens	when	scanning	is	canceled	or	timed
out.

To	enable	the	image	and	imageGraphics	properties	being	filled	in	the	ReadResult	object,
you	have	to	set	the	corresponding	enableImage()	and/or	enableImageGraphics()
properties	of	the	ReaderDevice	object.

To	see	an	example	on	how	the	image	and	SVG	graphics	are	used	and	displayed	in
paralle l,	refer	to	the	sample	applications	provided	in	the	SDK	package.

Not	all	supported	devices	provide	SVG	graphics.

To	access	the	raw	bytes	from	the	scanned	barcode,	you	can	use	the	XML	property.	The
bytes	are	stored	as	a	Base64	String	under	the	"full_string"	tag.	Here's	an	example	how
you	can	use	a	XML	parser	to	extract	the	raw	bytes	from	the	XML	property.

try	{
				XmlPullParserFactory	factory	=	XmlPullParserFactory.newInstance();
				factory.setNamespaceAware(true);
				XmlPullParser	xpp	=	factory.newPullParser();

				String	tag	=	"";

t it le:	Cognex	Mobile	Barcode	SDK	for	Android	(v2.1.x)	;	ver:	2.7.x 27	/	41

				//	the	raw	bytes	will	be	stored	in	this	variable
				byte[]	bytes;

				xpp.setInput(new	StringReader(result.getXml()));
				int	eventType	=	xpp.getEventType();
				while	(eventType	!=	XmlPullParser.END_DOCUMENT)	{
								if	(eventType	==	XmlPullParser.START_TAG)	{
												tag	=	xpp.getName();
								}
								else	if	(eventType	==	XmlPullParser.TEXT	&&	tag.equals("full_string"))	{
												String	base64String	=	xpp.getText();
												//	Get	the	bytes	from	the	base64	string	here
												bytes	=	Base64.decode(base64String,	Base64.DEFAULT);
												break;
								}
								else	if	(eventType	==	XmlPullParser.END_TAG	&&	tag.equals("full_string"))	{
												tag	=	"";
												break;
								}
								eventType	=	xpp.next();
				}
}	catch	(Exception	e)	{
				e.printStackTrace();
}

Image	Results

By	default,	the	image	and	SVG	results	are	disabled,	which	means	that	when	scanning,
the	ReadResults	will	not	contain	any	data	in	the	corresponding	properties.

To	enable	image	results,	invoke	the	enableImage()	method	from	the	ReaderDevice
object:

readerDevice.enableImage(true);

To	enable	SVG	results,	invoke	the	enableImageGraphics()	method	on	ReaderDevice
object:

readerDevice.	enableImageGraphics(true);	

	

Handling	Disconnects

t it le:	Cognex	Mobile	Barcode	SDK	for	Android	(v2.1.x)	;	ver:	2.7.x 28	/	41

There	might	be	cases	when	a	device	disconnects	due	to	low	battery	condition	or	manual
cable	disconnection.	These	cases	can	be	detected	by	the	onConnectionStateChanged()
method	of	the	ReaderDeviceListener	interface.	

Note:	The	onAvailabilityChanged()	method	of	ReaderDeviceListener	is	also	called
when	the	device	becomes	physically	unavailable.	It	means	that	the	(re)connection	is
not	possible.	You	should	always	check	the	getAvailability()	method	of	the
ReaderDevice	object	before	trying	to	call	the	connect()	method.

Appendix	A	-	DMCC	for	the	Camera	Reader

Appendix	A	-	DMCC	for	the	Camera	Reader

The	following	table	lists	the	various	DMCC	commands	supported	by	the	cmbSDK	when
using	the	built-in	camera	for	barcode	scanning.	

Many	of	these	commands	are	also	supported	by	the	MX	mobile	terminals.	Commands
that	are	unique	to	the	camera	reader	are	indicated	as	such	with	an	X	in	the	last
column.

	

GET/SET 	 COMMAND	 PARAMETER(S)	 DESCRIPT ION	 	

GET/SET	 BATTERY.CHARGE	 	
Returns	the

current	battery
level	of	the	device
as	a	percentage.	

	

	 BEEP	 	 Plays	the	audible
beep	(tone).	 	

GET/SET	 BEEP.GOOD	 [0-3]	[0-2]	

Sets	the	number
of	beeps	(0-3)
and	the	beep

tone/pitch	(0-	2,
for	low,	medium,

high).	For	the
built-in	camera,

only	a	single	beep
with	no	pitch

	

t it le:	Cognex	Mobile	Barcode	SDK	for	Android	(v2.1.x)	;	ver:	2.7.x 29	/	41

control	is
supported.	Thus,

0	1	turns	the	beep
off,	1	1	turns	the

beep	on.	

GET/SET CAMERA.ZOOM 0-2

The	possible
values	for	the	SET
command	are:	0	-

normal	(un-
zoomed),	1	-

zoom	at	level	1,	2
-	zoom	at	level	2.
This	zoom	level	is

used	during
scanning.	When
scanning	ends	it

reset	to	0.

x

GET/SET CAMERA.ZOOM-
PERCENT

[100-MAX]	[100-
MAX]

Sets/Returns	level
1	zoom	(default

150%	on	Android,
200%	on	iOS),

and	level	2	zoom
(default	300%	on
Android,	400%	on

iOS).
Note:	The	camera

needs	to	be
started	at	least

once	from	sdk	to
have	a	proper
value	for	max
capable	zoom

(MAX)

x

GET/SET	 CODABAR.CODESIZE	 ON	min	max	OFF
min	max	

Accepts	any
length	Codabar.
Sets	min/max

length	of
accepted
Codabar.	

X
X	

GET/SET	 C11.CHKCHAR	 ON	|	OFF	 Turns	Code	11
check	digit	on/off.	 X	

GET/SET	 C11.CHKCHAR-OPTION	 1	2	
Requires	single

checksum. X

t it le:	Cognex	Mobile	Barcode	SDK	for	Android	(v2.1.x)	;	ver:	2.7.x 30	/	41

Requires	double
checksum.	

X	

GET/SET	 C11.CODESIZE	 ON	min	max	OFF
min	max	

Accepts	any
length	Code	11.
Sets	min/max

length	of
accepted	Code

11.	

X
X	

GET/SET	 C25.CODESIZE	 ON	min	max	OFF
min	max	

Accepts	any
length	Code	25.
Sets	min/max

length	of
accepted	Code

25.	

X
X	

GET/SET	 C39.ASCII	 ON	|	OFF	
Turns	Code	39
extended	ASCII

on/off.	
	

GET/SET	 C39.CODESIZE	 ON	min	max	OFF
min	max	

Accepts	any
length	Code	39.
Sets	min/max

length	of
accepted	Code

39.	

	

GET/SET	 C39.CHKCHAR	 ON	|	OFF	 Turns	Code	39
check	digit	on/off	 	

GET/SET	 C93.ASCII	 ON	|	OFF	
Turns	Code	93
extended	ASCII

on/off	
X	

GET/SET	 C93.CODESIZE	 ON	min	max	OFF
min	max	

Accepts	any
length	Code	93.
Sets	min/max

length	of
accepted	Code

93.	

	

	 CONFIG.DEFAULT	 	

Resets	most	of	the
camera	API

settings	to	default,
except	those
noted	as	not

resetting	(see
Appendix	B).	To

	

t it le:	Cognex	Mobile	Barcode	SDK	for	Android	(v2.1.x)	;	ver:	2.7.x 31	/	41

reset	all	settings,
use

DEVICE.DEFAULT.	
		

GET/SET	 DATA.RESULT-TYPE	 0	1	2	4	8	

Specifies	results
to	be	returned

(sum	of	multiple
values):	None

Text	string	result
(default)

XML	results	
XML	stats

Scan	image	(see
IMAGE.*

commands)	

	

GET/SET	 DATABAR.EXPANDED	 ON	|	OFF	
Turns	the	DataBar

Expanded
symbology	on/off.	

	

GET/SET	 DATABAR.LIMITED	 ON	|	OFF	
Turns	the	DataBar

Limited
symbology	on/off.	

	

GET/SET	 DATABAR.RSS14	 ON	|	OFF	
Turns	the	DataBar
RSS14	symbology

on/off.	
X	

GET/SET	 DATABAR.RSS14STACK	 ON	|	OFF	
Turns	the	DataBar
RSS14	Stacked

symbology	on/off.	
X	

GET/SET	 DECODER.1D-
SYMBOLORIENTATION	 0	1	2	3	

Use
omnidirectional
scan	orientation.

Use	horizontal	and
vertical	scan

orientation.	Use
vertical	scan
orientation.

Use	horizontal
scan	orientation.	

	

GET/SET	 DECODER.EFFORT	 1-5	

Sets	the	effort
level	for	image

analysis/decoding.
The	default	is	2. X	

t it le:	Cognex	Mobile	Barcode	SDK	for	Android	(v2.1.x)	;	ver:	2.7.x 32	/	41

Do	not	use	4-5	for
online	scanning.	

GET/SET	 DECODER.MAX-SCAN-
TIMEOUT	 1-120	

Sets	the	timeout
for	the	live-stream
preview.	When	the

timeout	is
reached,

decoding	is
paused;	the	live-
stream	preview
will	remain	on-

screen.	

X	

GET DECODER.MAX-
THREADS 	

Returns	the	max
number	of	CPU

threads	supported
by	the	device.

X

GET/SET DECODER.THREADS-
USED [0-MAX]

Specify	the	max
number	of	CPU
threads	that	the
scanner	can	use

during	the
scanning	process.

X

	 DEVICE.DEFAULT	 	
Resets	the	camera

API	settings	to
default	(see
Appendix	B).	

	

GET	 DEVICE.FIRMWARE-VER	 	 Gets	the	device
firmware	version.	 	

GET	 DEVICE.ID	 	

Returns	device	ID
assigned	by

Cognex	to	the
scanning	device.

For	a	built-in
camera,	SDK
returns	53.

	

GET/SET	 DEVICE.NAME	 	

Returns	the	name
assigned	to	the

device.	By	default,
this	is	“MX-“	plus
the	last	6	digits	of

DEVICE.SERIAL-

	

t it le:	Cognex	Mobile	Barcode	SDK	for	Android	(v2.1.x)	;	ver:	2.7.x 33	/	41

NUMBER.	

GET	 DEVICE.SERIAL-
NUMBER	 	

Returns	the	serial
number	of	the

device.	For	a	built-
in	camera,	the
SDK	assigns	a

pseudo-random
number.	

	

GET	 DEVICE.TYPE	 	

Returns	the	device
name	assigned	by

Cognex	to	the
scanning	device.

For	a	built-in
camera,	SDK
returns	“MX-

Mobile”.	

	

GET/SET	 FOCUS.FOCUSTIME	 0-10	

Sets	the	camera’s
auto-focus	period

(how	often	the
camera	should

attempt	to
refocus).	The
default	is	3.

	

GET/SET	 I2O5.CHKCHAR	 ON	|	OFF	
Turns	Interleaved
2	of	5	check	digit

on/off.	
	

GET/SET	 I205.CODESIZE	 ON	min	max	OFF
min	max	

Accepts	any
length	Interleaved

2	of	5.
Sets	min/max

length	of
accepted

Interleaved	2	of
5.	

X
X	

GET/SET	 IMAGE.FORMAT	 0	1	2	

Scanner	returns
image	result	in
bitmap	format.

Scanner	returns
image	result	in

JPEG	format.
Scanner	returns
image	result	in
PNG	format.	

	

t it le:	Cognex	Mobile	Barcode	SDK	for	Android	(v2.1.x)	;	ver:	2.7.x 34	/	41

GET/SET	 IMAGE.QUALITY	 10,	15,	20,	...90	 Specifies	JPEG
image	quality.	 	

GET/SET	 IMAGE.SIZE	 0	1	2	3	

Scanner	returns
full	size	image.
Scanner	returns
1⁄4	size	image.
Scanner	returns
1/16	size	image.
Scanner	returns
1/62	size	image.	

	

GET/SET	 LIGHT.AIMER	 0-1	
Disables/enables
the	aimer	(when

the	scanner
starts).	

	

GET/SET	 LIGHT.INTERNAL-
ENABLE	 ON	|	OFF	

Enables/disables
illumination	(when

the	scanner
starts).	

	

GET/SET	 MSI.CHKCHAR	 ON	|	OFF	 Turns	MSI	Plessey
check	digit	on/off.	 	

GET/SET	 MSI.CHKCHAR-OPTION	 0	1	2	3	4	5	

Use	mod	10
checksum

Use	mod	10	mod
10	checksum
Use	mod	11

checksum	(IBM
algorithm)

Use	mod	11	mod
10	checksum	(IBM

algorithm)	Use
mod	11	checksum

(NCR	algorithm)
Use	mod	11	mod
10	checksum	(NCR

algorithm)	

X
X	

GET/SET	 MSI.CODESIZE	 ON	min	max	OFF
min	max	

Accepts	any
length	MSI	Plessey.

Sets	min/max
length	of

accepted	MSI
Plessey.	

X
X	

t it le:	Cognex	Mobile	Barcode	SDK	for	Android	(v2.1.x)	;	ver:	2.7.x 35	/	41

GET/SET	 SYMBOL.AZTECCODE	 ON	|	OFF	
Turns	the	Aztec

Code	symbology
on/off.	

	

GET/SET	 SYMBOL.CODABAR	 ON	|	OFF	 Turns	the	Codabar
symbology	on/off.	 	

GET/SET	 SYMBOL.C11	 ON	|	OFF	 Turns	the	Code	11
symbology	on/off.	 X	

GET/SET	 SYMBOL.C128	 ON	|	OFF	
Turns	the	Code
128	symbology

on/off.	
	

GET/SET	 SYMBOL.C25	 ON	|	OFF	
Turns	the	Code	25
symbology	on/off

(standard).	
	

GET/SET	 SYMBOL.C39	 ON	|	OFF	 Turns	the	Code	39
symbology	on/off.	 	

GET/SET	 SYMBOL.C93	 ON	|	OFF	 Turns	the	Code	93
symbology	on/off.	 	

GET/SET	 SYMBOL.COOP	 ON	|	OFF	
Turns	the	COOP

symbology	(Code
25	variant)	on/off.	

X	

GET/SET	 SYMBOL.DATAMATRIX	 ON	|	OFF	
Turns	the	Data

Matrix	symbology
on/off.	

	

GET/SET	 SYMBOL.DATABAR	 ON	|	OFF	

Turns	the	DataBar
Expanded	and

Limited
symbologies

on/off.	

	

GET/SET	 SYMBOL.DOTCODE	 ON	|	OFF	 Turns	the	DotCode
symbology	on/off.	 	

GET/SET	 SYMBOL.IATA	 ON	|	OFF	
Turns	the	IATA

symbology	(Code
25	variant)	on/off.	

X	

Turns	the	Inverted

t it le:	Cognex	Mobile	Barcode	SDK	for	Android	(v2.1.x)	;	ver:	2.7.x 36	/	41

GET/SET	 SYMBOL.INVERTED	 ON	|	OFF	 symbology	(Code
25	variant)	on/off.	

X	

GET/SET	 SYMBOL.ITF14	 ON	|	OFF	
Turns	the	ITF-14

symbology	(Code
25	variant)	on/off.	

X	

GET/SET	 SYMBOL.UPC-EAN	 ON	|	OFF	

Turns	the	UPC-A,
UPC-E,	EAN-8,	and

EAN-13
symbologies

on/off.	

	

GET/SET	 SYMBOL.MATRIX	 ON	|	OFF	
Turns	the	Matrix

symbology	(Code
25	variant)	on/off.	

X	

GET/SET	 SYMBOL.MAXICODE	 ON	|	OFF	
Turns	the
MaxiCode

symbology	on/off.	
X	

GET/SET	 SYMBOL.MSI	 ON	|	OFF	
Turns	the	MSI

Plessey
symbology	on/off.	

	

GET/SET	 SYMBOL.PDF417	 ON	|	OFF	 Turns	the	PDF417
symbology	on/off.	 	

GET/SET	 SYMBOL.PLANET	 ON	|	OFF	 Turns	the	PLANET
symbology	on/off.	 	

GET/SET	 SYMBOL.POSTNET	 ON	|	OFF	 Turns	the	POSTNET
symbology	on/off.	 	

GET/SET	 SYMBOL.4STATE-IMB	 ON	|	OFF	
Turns	the

Intelligent	Mail
Barcode

symbology	on/off.	
	

GET/SET	 SYMBOL.4STATE-RMC	 ON	|	OFF	
Turns	the	Royal

Mail	Code
symbology	on/off.	

	

GET/SET	 SYMBOL.QR	 ON	|	OFF	
Turns	the	QR	and

MicroQR
symbologies

on/off.	
	

t it le:	Cognex	Mobile	Barcode	SDK	for	Android	(v2.1.x)	;	ver:	2.7.x 37	/	41

GET/SET	 TRIGGER.TYPE	 0	1	2	3	4	5	

Not	supported	Not
supported	Manual

(default)	Not
supported	Not

supported
Continuous	

	

GET/SET	 UPC-EAN.EAN13	 ON	|	OFF	 Turns	the	EAN-13
symbology	on/off.	 X	

GET/SET	 UPC-EAN.EAN8	 ON	|	OFF	 Turns	the	EAN-8
symbology	on/off.	 X	

GET/SET	 UPC-EAN.UPC-A	 ON	|	OFF	 Turns	the	UPC-A
symbology	on/off.	 X	

GET/SET	 UPC-EAN.UPC-E	 ON	|	OFF	 Turns	the	UPC-E
symbology	on/off.	 X	

GET/SET	 UPC-EAN.UPCE1	 ON	|	OFF	 Turns	the	UPC-E1
symbology	on/off.	 	

GET/SET	 UPC-EAN.SUPPLEMENT	 0	1-4	

Turns	off	UPC
supplemental

codes.	Turns	on
UPC	supplemental

codes.	

	

GET/SET VIBRATION.GOOD ON	|	OFF
Sets/gets	whether
to	vibrate	when	a

code	is	read
(default	is	ON)

	

	

Appendix	B	-	Camera	Reader	Defaults

Appendix	B	-	Camera	Reader	Defaults

The	following	table	lists	the	defaults	the	SDK	uses	on	startup	for	the	camera	reader.

Note:	At	the	low-level,	the	cmbSDK	supported	devices	can	perform	two	types	of

t it le:	Cognex	Mobile	Barcode	SDK	for	Android	(v2.1.x)	;	ver:	2.7.x 38	/	41

configuration	resets:	a	device	reset	and	a	config	reset.	A	device	reset	restores	all
configuration	properties	to	their	saved	defaults,	while	a	config	reset	restores	mostly
the	scanning	settings,	leaving	communication	settings	alone.	In	the	table	below,	those
items	that	are	only	reset	by	a	device	reset	are	indicated.

Note:	The	Reader	Device	method	resetConfig()	performs	a	config	reset.	To	perform	a
device	reset,	the	DMCC	command	DEVICE.DEFAULT	would	need	to	be	issued.

	

SETTING DEFAULT 	VALUE
DEVICE
RESET
ONLY?

BEEP.GOOD 1	1	(Turn	beep	on) 	

C11.CHKCHAR OFF 	

C11.CHKCHAR-OPTION 1 	

C39.ASCII OFF 	

C39.CHKCHAR OFF 	

C93.ASCII OFF 	

COM.DMCC-HEADER 1	(Include	Result	ID) Y

COM.DMCC-RESPONSE 0	(Extended) Y

DATA.RESULT-TYPE 1 Y

DECODER.1D-
SYMBOLORIENTATION 1 	

t it le:	Cognex	Mobile	Barcode	SDK	for	Android	(v2.1.x)	;	ver:	2.7.x 39	/	41

DECODER.EFFORT 2 	

DECODER.MAX-SCAN-TIMEOUT 60 	

DEVICE.NAME “MX-“	+	the	last	six	digits	of
DEVICE.SERIAL-NUMBER 	

Symbologies	(SYMBOL.*) OFF	(all	symbologies	are
disabled) 	

Symbology	sub-types
(groups):	DATABAR.EXPANDED

DATABAR.LIMITED
DATABAR.RSS14

DATABAR.RSS14STACK	UPC-
EAN.EAN13

UPC-EAN.EAN8	UPC-EAN.UPC-A
UPC-EAN.UPC-E	UPCE-	AN.UPCE1

ON	OFF	OFF	OFF	ON	ON	ON
ON	OFF 	

FOCUS.FOCUSTIME 3 	

I2O5.CHKCHAR OFF 	

IMAGE.FORMAT 1	(JPEG) 	

IMAGE.QUALITY 50 	

IMAGE.SIZE 1	(1/4	size) 	

LIGHT.AIMER

Default	based	on
cameraMode:	0:	NoAimer	and

FrontCamera
1:	PassiveAimer	and

ActiveAimer

Y

LIGHT.AIMER-TIMEOUT 60 	

t it le:	Cognex	Mobile	Barcode	SDK	for	Android	(v2.1.x)	;	ver:	2.7.x 40	/	41

LIGHT.INTERNAL-ENABLE OFF
	
	

	

Setting Default	Value Device	Reset	Only?

Minimum/maximum	code	lengths ON	4	40 	

MSI.CHKCHAR OFF 	

MSI.CHKCHAR-OPTION 0 	

TRIGGER.TYPE 2	(Manual) 	

UPC-EAN.SUPPLEMENT 0 	

	

	

Precaut ions

Precaut ions

Observe	these	precautions	when	installing	the	Cognex	product,	to	reduce	the	risk	of
injury	or	equipment	damage:

To	reduce	the	risk	of	damage	or	malfunction	due	to	over-voltage,	line	noise,
electrostatic	discharge	(ESD),	power	surges,	or	other	irregularities	in	the	power	supply,
route	all	cables	and	wires	away	from	high-voltage	power	sources.
Changes	or	modifications	not	expressly	approved	by	the	party	responsible	for
regulatory	compliance	could	void	the	user’s	authority	to	operate	the	equipment.

t it le:	Cognex	Mobile	Barcode	SDK	for	Android	(v2.1.x)	;	ver:	2.7.x 41	/	41

Cable	shielding	can	be	degraded	or	cables	can	be	damaged	or	wear	out	more	quickly
if	a	service	loop	or	bend	radius	is	tighter	than	10X	the	cable	diameter.	The	bend
radius	must	begin	at	least	six	inches	from	the	connector.
This	device	should	be	used	in	accordance	with	the	instructions	in	this	manual.
All	specifications	are	for	reference	purpose	only	and	may	be	changed	without	notice.	

