
t it le:	Xamarin	(v2.1.x)	;	ver:	2.7.x 1	/	38

Xamarin	(v2.1.x)

Introduct ion

Xamarin	is	unique	by	offering	a	single	language	–	C#,	class	library,	and	runtime	that
works	across	all	three	mobile	platforms	of	iOS,	Android,	and	Windows	Phone	(Windows
Phone’s	native	language	is	already	C#),	while	still	compiling	native	(non-interpreted)
applications	that	are	performant	enough	even	for	demanding	games.

Each	of	these	platforms	has	a	different	feature	set	and	each	varies	in	its	ability	to	write
native	applications	–	that	is,	applications	that	compile	down	to	native	code	and	that
interop	fluently	with	the	underlying	Java	subsystem.	For	example,	some	platforms	only
allow	apps	to	be	built	in	HTML	and	JavaScript,	whereas	some	are	very	low-level	and	only
allow	C/C++	code.	Some	platforms	don’t	even	utilize	the	native	control	toolkit.

Xamarin	is	unique	in	that	it	combines	all	of	the	power	of	the	native	platforms	and	adds	a
number	of	powerful	features	of	its	own,	including:

1.	 Complete	Binding	f or	the	underlying	SDKs	–	Xamarin	contains	bindings	for
nearly	the	entire	underlying	platform	SDKs	in	both	iOS	and	Android.	Additionally,
these	bindings	are	strongly-typed,	which	means	that	they’re	easy	to	navigate	and
use,	and	provide	robust	compile-time	type	checking	and	during	development.	This
leads	to	fewer	runtime	errors	and	higher	quality	applications.

2.	 Object ive-C,	Java,	C,	and	C++	Interop	–	Xamarin	provides	facilities	for	directly
invoking	Objective-C,	Java,	C,	and	C++	libraries,	giving	you	the	power	to	use	a	wide
array	of	3rd	party	code	that	has	already	been	created.	This	lets	you	take	advantage
of	existing	iOS	and	Android	libraries	written	in	Objective-C,	Java	or	C/C++.	Additionally,
Xamarin	offers	binding	projects	that	allow	you	to	easily	bind	native	Objective-C	and
Java	libraries	using	a	declarative	syntax.

3.	 Modern	Language	Const ructs	–	Xamarin	applications	are	written	in	C#,	a	modern
language	that	includes	significant	improvements	over	Objective-C	and	Java	such	as
Dynamic	Language	Features	,	Functional	Constructs	such	as	Lambdas	,	LINQ	,	Parallel
Programming	features,	sophisticated	Generics	,	and	more.

4.	 Amazing	Base	Class	Library	(BCL)	–	Xamarin	applications	use	the	.NET	BCL,	a
massive	collection	of	classes	that	have	comprehensive	and	streamlined	features
such	as	powerful	XML,	Database,	Serialization,	IO,	String,	and	Networking	support,	just
to	name	a	few.	Additionally,	existing	C#	code	can	be	compiled	for	use	in	an
applications,	which	provides	access	to	thousands	upon	thousands	of	libraries	that	will
let	you	do	things	that	aren’t	already	covered	in	the	BCL.

5.	 Modern	Integrated	Development 	Environment 	(IDE)	–	Xamarin	uses	Xamarin
Studio	on	Mac	OS	X	and	Visual	Studio	on	Windows.	These	are	both	modern	IDE’s	that
include	features	such	as	code	auto	completion,	a	sophisticated	Project	and	Solution
management	system,	a	comprehensive	project	template	library,	integrated	source
control,	and	many	others.

6.	 Mobile	Cross	Plat f orm	Support 	–	Xamarin	offers	sophisticated	cross-platform
support	for	the	three	major	mobile	platforms	of	iOS,	Android,	and	Windows	Phone.
Applications	can	be	written	to	share	up	to	90%	of	their	code,	and	our	Xamarin.Mobile

t it le:	Xamarin	(v2.1.x)	;	ver:	2.7.x 2	/	38

library	offers	a	unified	API	to	access	common	resources	across	all	three	platforms.	This
can	significantly	reduce	both	development	costs	and	time	to	market	for	mobile
developers	that	target	the	three	most	popular	mobile	platforms.

How	Does	Xamarin	Work?

Xamarin	offers	two	commercial	products:	Xamarin.iOS	and	Xamarin.Android.	They’re	both
built	on	top	of	Mono,	an	open-source	version	of	the	.NET	Framework	based	on	the
published	.NET	ECMA	standards.	Mono	has	been	around	almost	as	long	as	the	.NET
framework	itself,	and	runs	on	nearly	every	imaginable	platform	including	Linux,	Unix,
FreeBSD,	and	Mac	OS	X.

On	iOS,	Xamarin’s	Ahead-of-Time 	(AOT)	Compiler	compiles	Xamarin.iOS	applications
directly	to	native	ARM	assembly	code.	On	Android,	Xamarin’s	compiler	compiles	down	to
Intermediate	Language	(IL),	which	is	then	Just-in-Time 	(JIT)	compiled	to	native	assembly
when	the	application	launches.

In	both	cases,	Xamarin	applications	utilize	a	runtime	that	automatically	handles	things
such	as	memory	allocation,	garbage	collection,	underlying	platform	interop,	etc.

Xamarin.Forms

Xamarin.Forms	is	a	framework	that	allows	developers	to	rapidly	create	cross	platform	user
interfaces.	It	provides	it's	own	abstraction	for	the	user	interface	that	will	be	rendered
using	native	controls	on	iOS,	Android,	Windows,	or	Windows	Phone.	This	means	that
applications	can	share	a	large	portion	of	their	user	interface	code	and	still	retain	the
native	look	and	feel	of	the	target	platform.

Xamarin.Forms	allows	for	rapid	prototyping	of	applications	that	can	evolve	over	time	to
complex	applications.	Because	Xamarin.Forms	applications	are	native	applications,	they
don't	have	the	limitations	of	other	toolkits	such	as	browser	sandboxing,	limited	APIs,	or
poor	performance.	Applications	written	using	Xamarin.Forms	are	able	to	utilize	any	of	the
API’s	or	features	of	the	underlying	platform,	such	as	(but	not	limited	to)	CoreMotion,
PassKit,	and	StoreKit	on	iOS;	NFC	and	Google	Play	Services	on	Android;	and	Tiles	on
Windows.	In	addition,	it's	possible	to	create	applications	that	will	have	parts	of	their	user
interface	created	with	Xamarin.Forms	while	other	parts	are	created	using	the	native	UI
toolkit.

Xamarin.Forms	applications	are	architected	in	the	same	way	as	traditional	cross-platform
applications.	The	most	common	approach	is	to	use	Portable	Libraries	or	Shared	Projects	to
house	the	shared	code,	and	create	platform	specific	applications	that	will	consume	the
shared	code.

There	are	two	techniques	to	create	user	interfaces	in	Xamarin.Forms.	The	first	technique
is	to	create	UIs	entire ly	with	C#	source	code.	The	second	technique	is	to	use	Extensible
Application	Markup	Language	(XAML),	a	declarative	markup	language	that	is	used	to
describe	user	interfaces.	For	more	information	about	XAML,	see	XAML	Basics.

https://developer.xamarin.com/guides/cross-platform/application_fundamentals/pcl/
https://developer.xamarin.com/guides/cross-platform/application_fundamentals/shared_projects/
https://developer.xamarin.com/guides/xamarin-forms/user-interface/xaml-basics/

t it le:	Xamarin	(v2.1.x)	;	ver:	2.7.x 3	/	38

Instalat ion

To	start	developing	Xamarin	application	first	you	need	to	install	Visual	Studio	or	Xamarin
Studio	and	make	sure	to	include	all	necessary	Xamarin	components.	In	our	examples	we
will	use	Visual	Studio	to	show	you	how	to	develop	Xamarin	application	and	use	our	SDK.
Navigate	to	this	link	to	read	step	by	step	how	to	download	and	install	Visual	Studio	for
Xamarin	applications.

Changelog

version	1.0.4

Update	README.md

version	1.0.3

Bug	fixes
Custom	renderer	events	changed

version	1.0.2

Custom	renderer	implementation	changed.
One	Reader	Device	object	is	used	for	every	page	where	scanning	will	be
implemented

version	1.0.1

Update	to	cmbSDK	v.	2.0.1
Handling	multicode

Xamarin.Android

Gett ing	Started

In	the	following	sections	we	will	explain	how	our	sample	app	is	developed	step	by	step.

Open	Visual	Studio	and	follow	these	steps:

1.	Go	to	File	->	New	->	Project .

2.	Create	Blank	App	(Android).

https://developer.xamarin.com/guides/cross-platform/getting_started/installation/

t it le:	Xamarin	(v2.1.x)	;	ver:	2.7.x 4	/	38

When	your	new	project	is	loaded	add	a	reference	to	the	XamarinDataManLibrary.dll	file .

t it le:	Xamarin	(v2.1.x)	;	ver:	2.7.x 5	/	38

After	creating	a	blank	application,	create	all	resources	you	will	use	(icons,	images,	styles,
layouts,	etc.).	You	can	copy	them	from	our	sample.

Next	right	click	on	your	project	file ,	then	click	Properties	and	go	to	Android	Manifest
section.

Setup	your	Manifest	file 	(app	name,	app	icon,	minimum	and	maximum	android	versions),
make	sure	to	enable	Camera	permission	for	this	application.

t it le:	Xamarin	(v2.1.x)	;	ver:	2.7.x 6	/	38

Scanner	Act ivity

After	we've	set	some	necessary	properties,	we	can	create	the	ScannerAct ivity	which

t it le:	Xamarin	(v2.1.x)	;	ver:	2.7.x 7	/	38

will	be	the	MainLauncher	for	this	application,	and	inherit	some	Interfaces.

	

[Activity(Label	=	"@string/app_name",	MainLauncher	=	true,	Icon	=	"@drawable/ic_launcher",	ScreenOri
entation	=	ScreenOrientation.Portrait)]
				public	class	ScannerActivity	:	Activity,	IOnConnectionCompletedListener,	IReaderDeviceListener,	
Android.Support.V4.App.ActivityCompat.IOnRequestPermissionsResultCallback
				{
								private	static	int	REQUEST_PERMISSION_CODE	=	12322;

								private	ListView	listViewResult;
								private	TextView	tvConnectionStatus;
								private	Button	btnScan;
								private	RelativeLayout	rlPreviewContainer;
								private	ImageView	ivPreview;

								private	List<ReadResult>	resultList;
								private	JavaList<IDictionary<string,	object>>	resultListData;
								private	ResultListViewAdapter	resultListAdapter;
								public	static	int	listViewResultSelectedItem	=	-1;

								private	bool	isScanning	=	false;

								private	static	ReaderDevice	readerDevice;

								private	enum	DeviceType	{	MX,	PHONE_CAMERA	}

								private	static	bool	isDevicePicked	=	false;
								private	static	DeviceType	param_deviceType	=	DeviceType.PHONE_CAMERA;

								private	static	bool	dialogAppeared	=	false;

								private	static	string	selectedDevice	=	"";

								private	bool	listeningForUSB	=	false;

								protected	override	void	OnCreate(Bundle	savedInstanceState)
								{
												base.OnCreate(savedInstanceState);

												SetContentView(Resource.Layout.activity_scanner);

								

Here	we	will	define	some	UI	e lements	and	variables	that	will	be	used	later	in	the	activity:

tvConnect ionStatus	-	TextView	an	UI	e lement	for	current	connection	status;

listViewResult 	-	ListView	an	UI	e lement	for	results	that	will	be	read;

btnScan	-	Button	an	UI	e lement	that	will	trigger	readerDevice.StartScanning	or
readerDevice.StopScanning;

t it le:	Xamarin	(v2.1.x)	;	ver:	2.7.x 8	/	38

rlPreviewContainer	-	ViewGroup	(RelativeLayout)	container	for	camera	preview;

ivPreview	-	ImageView	control	with	matching	size	as	its	parent	for	showing	the	last
frame	of	a	preview	or	scanning	session;

ReaderDevice	-	cmbSDK	object	that	will	present	MX	Device	or	Phone	Camera	depends
of	our	configuration;

Configure	ReaderDevice

Every	time	the	activity	starts,	we	are	calling	the	initDevice	where	we	configure	the
reader	device	object.

If	we	want	to	use	an	MX	Device	for	scanning	we	can	use:

readerDevice	=	GetMXDevice(this);
if	(!listeningForUSB)
{
				readerDevice.StartAvailabilityListening();
				listeningForUSB	=	true;
}

The	availability	of	the	MX	Device	can	change	when	the	device	turns	ON	or	OFF,	or	if	the
USB	cable	gets	connected	or	disconnected,	and	this	is	handled	by	the
IReaderDeviceListener	interface.

If	we	want	to	configure	the	reader	device	as	a	Phone	Camera	we	can	use:

readerDevice	=	GetPhoneCameraDevice(this,	CameraMode.NoAimer,	PreviewOption.Defaults,	rlPreviewConta
iner);

The	CameraMode	parameter	is	of	type	CameraMode	(defined	in	CameraMode.java)
and	it	accepts	one	of	the	following	values:

NO_AIMER:	Initializes	the	reader	to	use	a	live-stream	preview	(on	the	mobile	device
screen),	so	that	the	user	can	position	the	barcode	within	the	camera’s	fie ld	of	view
for	detection	and	decoding.	Use	this	mode	when	the	mobile	device	does	not	have	an
aiming	accessory.

PASSIVE_AIMER:	Initializes	the	reader	to	use	a	passive	aimer,	an	accessory
attached	to	the	mobile	device	or	mobile	device	case	that	uses	the	built-in	LED	flash
of	the	mobile	device	as	a	light	source	for	projecting	an	aiming	pattern.	In	this	mode
no	live-stream	preview	is	presented	on	the	device	screen,	since	an	aiming	pattern
will	be	projected.

t it le:	Xamarin	(v2.1.x)	;	ver:	2.7.x 9	/	38

FRONT_CAMERA:	Initializes	the	reader	to	use	the	mobile	front	facing	camera	of	the
device,	if	available	(not	all	mobile	devices	have	a	front	camera).	This	is	an	unusual
but	possible	configuration.	Most	front	facing	cameras	do	not	have	auto	focus	and
illumination,	and	provide	significantly	lower	resolution	images.	This	option	should	be
used	with	care.	In	this	mode	illumination	is	not	available.

All	of	the	above	modes	provide	the	following	default	settings	for	the	reader:

The	rear	camera	is	used.
The	zoom	feature	is	available	and	a	button	to	control	it	is	visible	on	the	live-stream
preview	(if	displayed).
The	simulated	hardware	trigger	is	disabled.
When	the	startScanning()	is	called,	the	decoding	process	is	started	(See
PreviewOption.PAUSED	below	for	more	details).

Based	on	the	selected	mode,	the	following	additional	options	and	behaviors	are	set:

NO_AIMER	(NoAimer)
The	live-stream	preview	is	displayed	when	the	startScanning()	method	is	called.
Illumination	is	available,	and	a	button	to	control	it,	is	visible	on	the	live-stream
preview.
If	commands	are	sent	to	the	reader	for	aimer	control,	they	will	be	ignored.

PASSIVE_AIMER	(Passive	Aimer)
The	live-stream	preview	will	not	be	displayed	when	the	startScanning()	method	is
called.
Illumination	is	not	available,	and	the	live-stream	preview	will	not	have	an	illumination
button.
If	commands	are	sent	to	the	reader	for	illumination	control,	they	will	be	ignored,	since
it	is	assumed	in	this	mode	that	the	built-in	LED	of	the	mobile	device	is	being	used	as
the	aimer.

FRONT_CAMERA	(FrontCamera)
The	live-stream	preview	is	displayed	when	the	startScanning()	method	is	called.
The	front	camera	is	used.
Illumination	is	not	available	and	the	live-stream	preview	will	not	have	an	illumination
button.
If	commands	are	sent	to	the	reader	for	aimer	or	illumination	control,	they	will	be
ignored.

The	PreviewOption	parameter	is	a	type	of	PreviewOption	(defined	in
PreviewOpt ion.java),	and	is	used	to	change	the	reader’s	default	values	or	override
defaults	derived	from	the	selected	CameraMode.	Multiple	options	can	be	specified	by	OR-
ing	them	when	passing	the	parameter.	The	available	options	are:

t it le:	Xamarin	(v2.1.x)	;	ver:	2.7.x 10	/	38

DEFAULTS:	Option	to	accept	all	defaults	set	by	the	CameraMode.
NO_ZOOM_BUTTON:	Option	to	hide	the	zoom	button	on	the	live-stream	preview,
preventing	a	user	from	adjusting	the	mobile	device	camera’s	zoom.
NO_ILLUMINATION_BUTTON:	Option	to	hide	the	illumination	button	on	the	live-
stream	preview,	preventing	a	user	from	toggling	the	illumination.
HARDWARE_TRIGGER:	Option	to	enable	a	simulated	hardware	trigger	(the	volume
down	button)	for	starting	scanning	on	the	mobile	device.	This	button	only	starts
scanning	when	pressed.	It	does	not	need	to	be	held	like	a	more	traditional	purpose-
built	scanner’s	trigger.	Pressing	the	button	a	second	time	does	not	stop	the	scanning
process.
PAUSED:	If	using	a	live-stream	preview,	when	this	option	is	set,	the	preview	will	be
displayed	when	the	startScanning()	method	is	called,	but	the	reader	will	not	start
decoding	(i.e.	looking	for	barcodes)	until	the	user	presses	the	on-screen	scanning
button	to	actually	start	the	scanning	process.
ALWAYS_SHOW:	Option	to	force	a	live-stream	preview	to	be	displayed,	even	if	an
aiming	mode	has	been	selected	(e.g.	CameraMode	==	PASSIVE_AIMER).

Connect ing	to	Device

After	configuring	the	ReaderDevice	we	need	to	connect	to	the	device.

Before	we	make	a	connection	the	ReaderDeviceListener	object	is	set	in	order	to
receive	events:

readerDevice.SetReaderDeviceListener(this);

Additionally,	you	can	enable	sending	the	last	triggered	image	and	SVG	from	the	reader
by:

readerDevice.EnableImage(true);
readerDevice.EnableImageGraphics(true);

Then	we	can	connect	with:

readerDevice.Connect(this);

Events	that	will	be	invoked	are:

t it le:	Xamarin	(v2.1.x)	;	ver:	2.7.x 11	/	38

public	void	OnConnectionStateChanged(ReaderDevice	reader)
public	void	OnConnectionCompleted(ReaderDevice	reader,	Throwable	error)

If	there	is	an	error	while	trying	to	connect,	the	error	will	be	thrown	as	a	parameter	in	the
OnConnect ionCompleted	method,	otherwise,	if	no	error	occurs,	the	error	parameter
will	be	null.

If	the	connection	is	successful,	the	statement	reader.Connect ionState	==
Connect ionState.Connected	will	be	true.

	

There	are	couple	of	API	methods	for	changing	some	public	properties	for	configuring	the
connected	device	and	you	should	invoke	them	when	the	Connect ionState	is
connected.

For	example	if	Mobile	Camera	is	used	as	a	ReaderDevice	there	are	no	symbologies
enabled	by	def ault .	You	must	enable	the	symbologies	that	you	want	to	use	with	the
SetSymbologyEnabled	API	method:

readerDevice.SetSymbologyEnabled(Symbology.C128,	true,	null);
readerDevice.SetSymbologyEnabled(Symbology.Datamatrix,	true,	null);
readerDevice.SetSymbologyEnabled(Symbology.UpcEan,	true,	null);
readerDevice.SetSymbologyEnabled(Symbology.Qr,	true,	null);

You	can	do	the	same	directly	by	sending	a	command	to	the	connected	device	with:

readerDevice.DataManSystem.SendCommand("SET	SYMBOL.MICROPDF417	ON");

	

	

Scanning	Barcodes

With	a	properly	configured	reader,	you	are	now	ready	to	scan	barcodes.	This	can	be	done
by	calling	the 	startScanning	method	from	your	ReaderDevice	object.

What	happens	next	is	based	on	the	type	of	ReaderDevice	and	how	it	has	been
configured,	but	in	general:

If	using	an	MX	Device,	the	user	can	press	a	trigger	button	on	the	device	to	turn	the
scanner	on	and	read	a	barcode;

t it le:	Xamarin	(v2.1.x)	;	ver:	2.7.x 12	/	38

If	using	the	camera	reader,	the	cmbSDK	starts	the	camera,	displays	the	configured
live-stream	preview,	and	begins	analyzing	the	frames	from	the	video	stream,	looking
for	a	configured	barcode	symbology;

Scanning	stops	under	one	of	the	following	conditions:

The	reader	found	and	decoded	a	barcode;
The	user	released	the	trigger	or	pressed	the	stop	button	on	the	live-stream	preview
screen;
The	camera	reader	timed	out	without	finding	a	barcode;
The	application	itself	calls	the	stopScanning()	method.

When	a	barcode	is	decoded	successfully	(the	first	case),	you	will	receive	a	ReadResult s
iterable	result	collection	object	in	the	ReaderDevice	listener	method.

If	your	MX	Device	is	configured	to	work	with	multi	code	scanning,	you	can	access	all
the	scanned	results	from	the	result s.SubResult s	property	which	is	an	array	that
contains	ReaderResult 	objects	and	it	will	be	null	if	single	code	scanning	is	used.

Example

public	void	OnReadResultReceived(ReaderDevice	reader,	ReadResults	results)
								{

												listViewResultSelectedItem	=	-1;
												resultList.Clear();
												resultListData.Clear();
												ivPreview.SetImageBitmap(null);

												if	(results.SubResults	!=	null	&&	results.SubResults.Count	>	0)
												{
																foreach	(ReadResult	subResult	in	results.SubResults)
																{
																				if	(subResult.IsGoodRead)
																				{
																								resultList.Add(subResult);

																								JavaDictionary<string,	object>	item	=	new	JavaDictionary<string,	object>();
																								item.Add("resultText",	subResult.ReadString);

																								Symbology	sym	=	subResult.Symbology;
																								if	(sym	!=	null)
																												item.Add("resultType",	subResult.Symbology.Name);
																								else
																												item.Add("resultType",	"UNKNOWN	SYMBOLOGY");

																								resultListData.Add(item);

t it le:	Xamarin	(v2.1.x)	;	ver:	2.7.x 13	/	38

																								listViewResultSelectedItem	=	resultListData.Count	-	1;
																				}
																				else
																				{
																								resultList.Add(subResult);

																								JavaDictionary<string,	object>	item	=	new	JavaDictionary<string,	object>();
																								item.Add("resultText",	"NO	READ");
																								item.Add("resultType",	"");

																								resultListData.Add(item);
																								listViewResultSelectedItem	=	resultListData.Count	-	1;
																				}

																				if	(subResult.Image	!=	null)
																				{
																								ivPreview.SetImageBitmap(renderSvg(subResult.ImageGraphics,	subResult.Image)
);
																				}
																				else
																				{
																								if	(subResult.ImageGraphics	!=	null)
																								{
																												ivPreview.SetImageBitmap(renderSvg(subResult.ImageGraphics,	ivPreview.Wi
dth,	ivPreview.Height));
																								}
																								else
																												ivPreview.SetImageBitmap(null);
																				}
																}
												}
												else	if	(results.Count	>	0)
												{
																ReadResult	result	=	results.GetResultAt(0);

																if	(result.IsGoodRead)
																{
																				resultList.Add(result);

																				JavaDictionary<string,	object>	item	=	new	JavaDictionary<string,	object>();
																				item.Add("resultText",	result.ReadString);

																				Symbology	sym	=	result.Symbology;
																				if	(sym	!=	null)
																								item.Add("resultType",	result.Symbology.Name);
																				else
																								item.Add("resultType",	"UNKNOWN	SYMBOLOGY");

																				resultListData.Add(item);
																				listViewResultSelectedItem	=	resultListData.Count	-	1;
																}
																else
																{
																				resultList.Add(result);

																				JavaDictionary<string,	object>	item	=	new	JavaDictionary<string,	object>();
																				item.Add("resultText",	"NO	READ");
																				item.Add("resultType",	"");

																				resultListData.Add(item);
																				listViewResultSelectedItem	=	resultListData.Count	-	1;

t it le:	Xamarin	(v2.1.x)	;	ver:	2.7.x 14	/	38

																}

																if	(result.Image	!=	null)
																{
																				ivPreview.SetImageBitmap(renderSvg(result.ImageGraphics,	result.Image));
																}
																else
																{
																				if	(result.ImageGraphics	!=	null)
																				{
																								ivPreview.SetImageBitmap(renderSvg(result.ImageGraphics,	ivPreview.Width,	iv
Preview.Height));
																				}
																				else
																								ivPreview.SetImageBitmap(null);
																}
												}

												isScanning	=	false;
												btnScan.Text	=	"START	SCANNING";
												resultListAdapter.NotifyDataSetChanged();
								}

result .Image	is	the	last	frame	from	the	scanning	process	and	it	will	be	displayed	in	the
ivPreview	ImageView,	and	result .ImageGraphics	is	SVG	image	that	locate	barcode
on	image.

Disconnect ing	from	Device

In	the	ScannerAct ivity	we	override	the	OnPause	and	the	OnStop	events	so	we	can
do	the	Disconnect 	and	the	StopAvailabilityListening	to	release	all	connection	when
we	navigate	from	or	destroy	that	activity.

protected	override	void	OnPause()
{
						base.OnPause();

						if	(readerDevice	!=	null)
						{
										readerDevice.Disconnect();
						}
}

protected	override	void	OnStop()
{
						if	(readerDevice	!=	null)
								try
								{
													readerDevice.StopAvailabilityListening();
								}
								catch	(System.Exception	e)	{	}

t it le:	Xamarin	(v2.1.x)	;	ver:	2.7.x 15	/	38

						listeningForUSB	=	false;

						base.OnStop();
}

Keep	in	mind	there	might	be	cases	when	a	device	disconnects	due	to	low	battery
condition	or	manual	cable	disconnection.

Licensing	the	SDK

If	you	plan	to	use	the	cmbSDK	to	do	mobile	scanning	with	a	smartphone	or	a	tablet
(without	the	MX	mobile	terminal),	the	SDK	requires	the	installation	of	a	license	key.
Without	a	license	key,	the	SDK	will	still	operate,	although	scanned	results	will	be	blurred
(the	SDK	will	randomly	replace	characters	in	the	scan	result	with	an	asterisk	character).

Contact	your	Cognex	Sales	Representative	for	information	on	how	to	obtain	a	license	key
including	trial	licenses	which	can	be	used	for	30	days	to	evaluate	the	SDK.

After	obtaining	your	license	key	there	are	two	ways	to	add	your	license	key	in	an
application.

The	first	one	is	to	add	it	as	a	meta	tag	in	application	tag	in	your	manifest	file:

<application	android:label="XamarinDataManSample">
							

		<meta-data	android:name="MX_MOBILE_LICENSE"	android:value="YOUR_MX_MOBILE_LICENSE"/>
</application>

Second	way	is	to	implement	the	activation	directly	from	code.	When	you	create	your
readerDevice	set	license	key	as	input	parameter	in	constructor:

...
readerDevice	=	GetPhoneCameraDevice(this,	CameraMode.NoAimer,	PreviewOption.Defaults,	rlPreviewConta
iner,	"YOUR_MX_MOBILE_LICENSE");

	

Api	Methods

t it le:	Xamarin	(v2.1.x)	;	ver:	2.7.x 16	/	38

Beep()

To	add	sound	"beep"	after	successful	scan	please	use	the	code	below:

readerDevice.Beep()

It	plays	an	audio	signal	on	the	MX	device.

Connect()/Disconnect()

The	process	of	connecting	and	disconnecting	to	a	MX	device	is	done	via	the
Connect/Disconnect	methods

Connect()

readerDevice.Connect(IOnConnectionCompletedListener	listenerObject)

will	try	to	connect	to	the	device.	When	the	Connect ()	is	executed	we	get	the	status	of
the	action	in	the	OnConnect ionCompleted	listener

OnConnectionCompleted(ReaderDevice	reader,Throwable	error){
	if(error	!=	null){
				//do	something	with	the	error
				readerDisconnected();
	}
}

Disconnect()

readerDevice.Disconnect()

will	disconnect	from	the	MX	device.

Examples:

t it le:	Xamarin	(v2.1.x)	;	ver:	2.7.x 17	/	38

readerDevice	=	ReaderDevice.GetMXDevice(mContext);
readerDevice.StartAvailabilityListening();
readerDevice.SetReaderDeviceListener(this);
readerDevice.EnableImage(true);
readerDevice.Connect(this);

...

public	void	OnAvailabilityChanged(ReaderDevice	reader)
{
				if	(reader.GetAvailability()	==	Availability.Available)
				{
										readerDevice.Connect(this);
				}
	...

EnableImage()

The	result	from	a	successful	scan	can	return	an	image.	This	is	the	last	frame	that
resolved	in	a	successful	scan.	To	enable	/	disable	this,	we	can	use	the	API	method:

void	readerDevice.EnableImage(bool	enable)

readerDevice	=	ReaderDevice.GetPhoneCameraDevice(mContext,	CameraMode.NoAimer,	PreviewOption.Default
s,	rlMainContainer);
readerDevice.EnableImage(true);
readerDevice.Connect(this);

EnableImageGraphics()

The	result	from	a	successful	scan	can	return	an	SVG	image	graphics.	This	is	the	last
frame	that	resolved	in	a	successful	scan.	To	enable	/	disable	this,	we	can	use	the	API
method:

void	readerDevice.EnableImageGraphics(bool	enable)

t it le:	Xamarin	(v2.1.x)	;	ver:	2.7.x 18	/	38

readerDevice	=	ReaderDevice.GetPhoneCameraDevice(mContext,	CameraMode.NoAimer,	PreviewOption.Default
s,	rlMainContainer);
readerDevice.EnableImageGraphics(true);
readerDevice.Connect(this);

GetAvailability()

Before	we	can	connect	to	an	MX	device,	we	need	to	know	if	there's	one	available	for
that	task.

Availability	reader.GetAvailability()

It	return	Availabilit y	object	that	can	be	Available,	Unavailable	or	Unknown

An	MX	device	is	available	when	there	is	an	USB	connection	to	our	smartphone.

Example

public	void	OnAvailabilityChanged(ReaderDevice	reader)
{
			if	(reader.GetAvailability()	==	Availability.Available)
			{
							readerDevice.Connect(this);
			}
				...

GetDeviceBatteryLevel()

If	we	want	to	check	the	battery	level	of	the	MX	device	we	can	use

void	readerDevice.GetDeviceBatteryLevel(IOnDeviceBatteryLevelListener
listenerObject)

Retrieves	the	current	battery	percentage	level	of	the	reader	device	as	input	parameter
in	OnDeviceBat teryLevelReceived	listener	method

Example

t it le:	Xamarin	(v2.1.x)	;	ver:	2.7.x 19	/	38

public	void	OnConnectionStateChanged(ReaderDevice	reader)
{
			if	(reader.ConnectionState	==	ConnectionState.Connected)
			{
								reader.GetDeviceBatteryLevel(this);

							
				}
}

public	void	OnDeviceBatteryLevelReceived(ReaderDevice	p0,	int	p1,	Throwable	p2)
{
				int	batteryLevel	=	p1;
}

IsLightsOn()/SetLightsOn()

If	we	want	to	check	whether	all	lights	of	the	MX	device	are	turned	on	or	off

void	readerDevice.IsLightsOn(IOnLightsListener	listenerObject)

Retrieves	if	lights	of	the	reader	device	are	turned	on	or	off	as	input	parameter	in
OnLightsOnCompleted	listener	method

To	turned	MX	device	light	on	or	off	we	use

void	reader.SetLightsOn(bool	_enable,	IOnLightsListener	listenerObject)

Example

public	void	OnConnectionStateChanged(ReaderDevice	reader)
{
			if	(reader.ConnectionState	==	ConnectionState.Connected)
			{
								reader.IsLightsOn(this);
							
				}
}
public	void	OnLightsOnCompleted(ReaderDevice	p0,	Java.Lang.Boolean	p1,	Throwable	p2)
{
			bool	lightsON	=	p1.BooleanValue();
}

t it le:	Xamarin	(v2.1.x)	;	ver:	2.7.x 20	/	38

IsSymbologyEnabled()/SetSymbologyEnabled()

If	we	want	to	check	some	symbology	is	enabled	or	disabled	we	can	use

void	readerDevice.IsSymbologyEnabled(Symbology	_symbology,
IOnSymbologyListener	listenerObject)

Retrieves	if	symbology	is	enabled	or	disabled	as	input	parameter	in
OnSymbologyEnabled	listener	method

To	enable	specific	symbology	we	use

void	readerDevice.SetSymbologyEnabled(Symbology	_symbology,	bool	_enable,
IOnSymbologyListener	listenerObject)

Example

public	void	OnConnectionStateChanged(ReaderDevice	reader)
{
			if	(reader.ConnectionState	==	ConnectionState.Connected)
			{
								reader.IsSymbologyEnabled(Symbology.Azteccode,	this);
							
				}
}
public	void	OnSymbologyEnabled(ReaderDevice	p0,	Symbology	p1,	Java.Lang.Boolean	p2,	Throwable	p3)

}

ResetConfig()

To	reset	MX	Device	configuration	settings	to	default	use

void	reader.ResetConfig(IOnResetConfigListener	listenerObject)

In	OnResetConf igCompleted	listener	we	can	check	if	resetting	was	successful	by
checking	if	Throwable	input	parameter	error	is	null	or	not

public	void	OnResetConfigCompleted(ReaderDevice	p0,	Throwable	p1)

t it le:	Xamarin	(v2.1.x)	;	ver:	2.7.x 21	/	38

{
						if	(p1	!=	null)
									Console.WriteLine("Resetting	was	unsuccessful.	Error:	"	+	p1.Message);
}

SetReaderDeviceListener()

To	register	listener	functions	OnAvailabilit yChanged,	OnConnect ionStateChanged
and	OnReadResultReceived	we	need	to	call	this	method	before	we	try	to	connect	to
reader	device

void	readerDevice.SetReaderDeviceListener(IReaderDeviceListener	listenerObject)

public	void	OnAvailabilityChanged(ReaderDevice	reader)
{
			if	(reader.GetAvailability()	==	Availability.Available)
			{
						readerDevice.Connect(this);
			}
}

public	void	OnConnectionStateChanged(ReaderDevice	reader)
{
				if	(reader.ConnectionState	==	ConnectionState.Connected)
				{						
				}
				else	if	(reader.ConnectionState	==	ConnectionState.Disconnected)
				{
				}
}

public	void	OnReadResultReceived(ReaderDevice	reader,	ReadResults	results)
{
			if	(results.Count	>	0)
			{
								ReadResult	result	=	results.GetResultAt(0);

								if	(result.IsGoodRead)
								{
													...

Example

t it le:	Xamarin	(v2.1.x)	;	ver:	2.7.x 22	/	38

readerDevice	=	ReaderDevice.GetPhoneCameraDevice(mContext,	CameraMode.NoAimer,	PreviewOption.Default
s,	rlMainContainer);
readerDevice.SetReaderDeviceListener(this);
readerDevice.Connect(this);

StartAvailabilityListening()/StopAvailabilityListening()

After	we	call	readerDevice.SetReaderDeviceListener(IReaderDeviceListener
listenerObject)	method	and	register	OnAvailabilit yChanged	listener	function	we	can
start/stop	availability	listening

StartAvailabilityListening()

void	readerDevice.StartAvailabilityListening()

will	start	listening	reader	device	availability	and	will	trigger	listener	function	every	time
when	availability	is	changed

StopAvailabilityListening()

void	readerDevice.StopAvailabilityListening()

will	stop	listening	reader	device	availability

Examples:

readerDevice	=	ReaderDevice.GetMXDevice(mContext);
readerDevice.StartAvailabilityListening();
readerDevice.SetReaderDeviceListener(this);
readerDevice.Connect(this);

protected	override	void	Dispose(bool	disposing)
{
					if	(readerDevice	!=	null	&&	readerDevice.ConnectionState	==	ConnectionState.Connected)
					{
										readerDevice.SetReaderDeviceListener(null);
										readerDevice.Disconnect();
					}

					if	(readerDevice	!=	null)
					try
					{

t it le:	Xamarin	(v2.1.x)	;	ver:	2.7.x 23	/	38

									readerDevice.StopAvailabilityListening();
					}
					catch	(System.Exception	e)	{	}

			base.Dispose(disposing);
}

StartScanning()/StopScanning()

After	we	connect	and	configure	our	reader	device	and	set	all	settings	that	we	need	we
can	start	scanning	process.

To	start	scanning	we	use	method

void	readerDevice.StartScanning()

Scanning	process	will	stop	when	our	reader	successfully	scan	some	barcode	or	we	can
stop	scanning	manually	with	this	method

void	readerDevice.StopScanning()

When	scanning	is	stopped,	no	matter	with	successful	scan	or	with	stopScanning()	method
OnReadResultReceived	listener	function	will	be	called	where	we	can	check	our	scan
result

public	void	OnReadResultReceived(ReaderDevice	reader,	ReadResults	results)
{
					if	(results.Count	>	0)
					{
								ReadResult	result	=	results.GetResultAt(0);

						if	(result.IsGoodRead)
						{
										Symbology	sym	=	result.Symbology;
										if	(sym	!=	null)
										{
															tvSymbology.Text	=	sym.Name;
										}
										else
										{
														tvSymbology.Text	=	"UNKNOWN	SYMBOLOGY";
										}
										tvCode.Text	=	result.ReadString;
						}
					else
					{
									tvSymbology.Text	=	"NO	READ";

t it le:	Xamarin	(v2.1.x)	;	ver:	2.7.x 24	/	38

									tvCode.Text	=	"";
						}
						ivPreview.SetImageBitmap(result.Image);
					}
}

Xamarin.iOS

Gett ing	Started

In	the	following	sections	we	will	explain	how	our	sample	app	is	developed	step	by	step.

Open	Visual	Studio	and	follow	this	steps:

1.	Go	to	File	->	New	->	Project .

2.	Create	Blank	App	(iPhone).

t it le:	Xamarin	(v2.1.x)	;	ver:	2.7.x 25	/	38

When	your	new	project	is	loaded	add	reference	to	XamarinDataManLibrary.dll	file .

t it le:	Xamarin	(v2.1.x)	;	ver:	2.7.x 26	/	38

Next	open	your	Inf o.plist 	file 	and	set	some	project	properties	for	your	needs	(app
name,	deployment	target,	main	interface,	etc..).

t it le:	Xamarin	(v2.1.x)	;	ver:	2.7.x 27	/	38

Important	thing	here	is	to	add	Camera	permission	for	this	app.	In	Visual	Studio	there	is	no
options	to	add	this	permission	from	here.	You	need	to	open	your	Inf o.plist 	file 	in	some
text	editor	and	add	this	lines:

<key>NSCameraUsageDescription</key>
<string>Camera	used	for	scanning</string>

Also	if	you	use	MX	Device	as	reader	device	add	this	protocols	in	Info.plist:

t it le:	Xamarin	(v2.1.x)	;	ver:	2.7.x 28	/	38

<key>UISupportedExternalAccessoryProtocols</key>
<array>
		<string>com.cognex.dmcc</string>
		<string>com.demo.data</string>
</array>

	

View	Controller

The	ViewCont roller	will	be	our	first	controller	in	Main.storyboard.	Here	we	are
creating	some	UI	e lements	and	variables	that	will	be	used	later	in	this	controller.

public	partial	class	ViewController	:	UIViewController,	ICMBReaderDeviceDelegate
				{
								protected	ViewController(IntPtr	handle)	:	base(handle)
								{
												//	Note:	this	.ctor	should	not	contain	any	initialization	logic.
								}

								CMBReaderDevice	readerDevice;
								public	bool	isScanning	=	false;

								private	NSMutableArray	tableData;
								private	MXResultsTableSource	tableSource;

								public	override	void	ViewDidLoad()
								{
												base.ViewDidLoad();

												...

lblConnect ion	-	Label	UI	e lement	for	current	connection	status.

tableSource	-	UITableViewSource	for	results	that	will	be	read.

btnScan	-	Button	UI	e lement	that	will	trigger	StartScanning	or	StopScanning.

ivPreview	-	ImageView	UI	element	for	showing	the	last	frame	of	a	preview	or	scanning
session.

CMBReaderDevice	-	cmbSDK	object	that	will	present	MX	Device	or	Phone	Camera
depends	of	our	configuration.

Configure	ReaderDevice

t it le:	Xamarin	(v2.1.x)	;	ver:	2.7.x 29	/	38

Here	we	override	the	ViewWillAppear	method	to	configure	reader	device	object	when
this	view	will	appear.

If	we	want	to	use	MX	Device	for	scanning	we	are	using

readerDevice	=	CMBReaderDevice.ReaderOfMXDevice();

The	availability	of	the	MX	Device	can	change	when	the	device	turns	ON	or	OFF,	or	if	the
USB	cable	gets	connected	or	disconnected,	and	is	handled	by	the
ICMBReaderDeviceDelegate	interface.	We	set	this	interface	as	property	for	reader
device	with

readerDevice.WeakDelegate	=	this;

and	allow	us	to	listen	these	three	events:

public	void	DidReceiveReadResultFromReader(CMBReaderDevice	reader,	CMBReadResults	readResults)
public	void	AvailabilityDidChangeOfReader(CMBReaderDevice	reader)
public	void	ConnectionStateDidChangeOfReader(CMBReaderDevice	reader)

If	we	want	to	configure	reader	device	as	Mobile	Camera.

readerDevice	=	CMBReaderDevice.ReaderOfDeviceCameraWithCameraMode(CDMCameraMode.NoAimer,	CDMPreviewO
ption.Defaults,	ivPreview);

The	CameraMode	parameter	is	of	the	type	CDMCameraMode,	and	it	accepts	one	of
the	following	values:

NoAimer:	Initializes	the	reader	to	use	a	live-stream	preview	(on	the	mobile	device
screen)	so	the	user	can	position	the	barcode	within	the	camera’s	fie ld	of	view	for
detection	and	decoding.	Use	this	mode	when	the	mobile	device	does	not	have	an
aiming	accessory.
PassiveAimer:	Initializes	the	reader	to	use	a	passive	aimer,	which	is	an	accessory
that	is	attached	to	the	mobile	device	or	mobile	device	case	that	uses	the	built-in	LED
flash	of	the	mobile	device	as	a	light	source	for	projecting	an	aiming	pattern.	In	this
mode,	no	live-stream	preview	is	presented	on	the	device	screen,	since	an	aiming
pattern	will	be	projected.
FrontCamera:	Initializes	the	reader	to	use	the	front	facing	camera	of	the	mobile
device,	if	available	(not	all	mobile	devices	have	a	front	camera).	This	is	an	unusual,
but	possible	configuration.	Most	front-facing	cameras	do	not	have	auto	focus	and

t it le:	Xamarin	(v2.1.x)	;	ver:	2.7.x 30	/	38

illumination,	and	provide	significantly	lower	resolution	images.	This	option	should	be
used	with	care.	In	this	mode	illumination	is	not	available.

All	of	the	above	modes	provide	the	following	default	settings	for	the	reader:

The	rear	camera	is	used.
The	zoom	feature	isa	vailable	and	a	button	to	control	it	is	visible	on	the	live-streamp
review	(if	displayed).
The	simulated	hardware	trigger	is	disabled.
When	startScanning()	is	called,	the	decoding	process	is	started.	(Seek
CDMPreviewOptionPaused	for	more	details.)

Based	on	the	selected	mode,	the	following	additional	options	and	behaviors	are	set:

NoAimer
The	live-stream	preview	is	displayed	when	the	startScanning()	method	is	called.
Illumination	is	available	and	a	button	to	control	it	is	visible	on	the	live-stream	preview.
If	commands	are	sent	to	the	reader	for	aimer	control,	they	will	be	ignored.

PassiveAimer
The	live-stream	preview	will	not	be	displayed	when	the	startScanning()	method	is
called.
Illumination	is	not	available	and	the	live-stream	preview	will	not	have	an	illumination
button.
If	commands	are	sent	to	the	reader	for	illumination	control,	they	will	be	ignored,	since
it	is	assumed	in	this	mode	that	the	built-in	LED	of	the	mobile	device	is	being	used	for
the	aimer.

FrontCamera
The	live-stream	preview	is	displayed	when	the	startScanning()	method	is	called.
The	front	camera	is	used.
Illumination	is	not	available,	and	the	live-stream	preview	will	not	have	an	illumination
button.	If	commands	are	sent	to	the	reader	for	aimer	or	illumination	control,	they	will
be	ignored.

The	previewOpt ions	parameter	(of	type	CDMPreviewOpt ion)	is	used	to	change	the
reader’s	default	values	or	override	defaults	derived	from	the	selected	CameraMode.
Multiple	options	can	be	specified	by	OR-ing	them	when	passing	the	parameter.	The
available	options	are	the	following:

Def ault s:	Use	this	option	to	accept	all	defaults	set	by	the	CameraMode.
NoZoomBtn:	This	option	hides	the	zoom	button	on	the	live-stream	preview,
preventing	a	user	from	adjusting	the	zoom	of	the	mobile	device	camera.
NoIllumBtn:	This	hides	the	illumination	button	on	the	live-stream	preview,

t it le:	Xamarin	(v2.1.x)	;	ver:	2.7.x 31	/	38

preventing	a	user	from	toggling	the	illumination.
HwTrigger:	This	enables	a	simulated	hardware	trigger	(the	volume	down	button)for
starting	scanning	on	the	mobile	device.	This	button	only	starts	scanning	when
pressed.	It	does	not	need	to	be	held	like	a	more	traditional	purpose-built	scanner’s
trigger.	Pressing	the	button	a	second	time	does	not	stop	the	scanning	process.
Paused:	If	using	a	live-stream	preview,	when	this	option	is	set,	the	preview	will	be
displayed	when	the	startScanning()	method	is	called,	but	the	reader	will	not	start
decoding	(i.e.	looking	for	barcodes)	until	the	user	presses	the	on-screen	scanning
button	to	actually	start	the	scanning	process.
AlwaysShow:	This	forces	alive-stream	preview	to	be	displayed,	even	if	an	aiming
mode	has	been	selected	(e.g.	CameraMode	==	PassiveAimer)

The	last	parameter	of	the	type	UIView	is	optional	and	is	used	as	a	container	for	the
camera	preview.	If	the	parameter	is	left	nil,	a	full	screen	preview	will	be	used.

Connect ing	to	Device

After	configuring	ReaderDevice	we	need	to	connect	to	the	device.

readerDevice.ConnectWithCompletion((error)	=>	{
			if	(error	!=	null)
			{
									new	UIAlertView("Failed	to	connect",	error.Description,	null,	"OK",	null).Show();
			}
});

If	there	is	some	error	while	trying	to	connect	error	will	be	thrown	as	parameter	in	callback
function.	If	everything	is	fine	error	parameter	will	be	null.

This	function	will	trigger	ConnectionStateDidChangeOfReader	method.	If	connection	is
successful	reader.Connect ionState	==	Connect ionState.Connected.

After	successful	connection	we	can	set	some	settings	for	ReaderDevice.	ReaderDevice
settings	can	be	set	with	already	wrapped	functions	or	directly	with	sending	commands	to
the	configured	device.

For	example	if	Mobile	Camera	is	used	as	a	ReaderDevice 	there	are	no	symbologies
enabled	by	def ault .	You	must	enable	the	symbologies	that	you	want	to	use	with	the
SetSymbology	wrapped	function.

In	this	example	we	are	enable	some	symbologies	and	set	setting	to	get	the	last	frame
from	scanning	in	ivPreview	ImageView.

readerDevice.SetSymbology(CMBSymbology.DataMatrix,	true,	(error)	=>
{
				if	(error	!=	null)

t it le:	Xamarin	(v2.1.x)	;	ver:	2.7.x 32	/	38

				{
										System.Diagnostics.Debug.WriteLine("FALIED	TO	ENABLE	[DataMatrix],	",	error.LocalizedDescr
iption);
				}
});
	readerDevice.SetSymbology(CMBSymbology.Qr,	true,	(error)	=>
	{
				if	(error	!=	null)
				{
										System.Diagnostics.Debug.WriteLine("FALIED	TO	ENABLE	[Qr],	",	error.LocalizedDescription);
				}
	});
readerDevice.SetSymbology(CMBSymbology.C128,	true,	(error)	=>
{
			if	(error	!=	null)
			{
									System.Diagnostics.Debug.WriteLine("FALIED	TO	ENABLE	[C128],	",	error.LocalizedDescription)
;
			}
});
readerDevice.SetSymbology(CMBSymbology.UpcEan,	true,	(error)	=>
{
			if	(error	!=	null)
			{
									System.Diagnostics.Debug.WriteLine("FALIED	TO	ENABLE	[UpcEan],	",	error.LocalizedDescriptio
n);
			}
	});

readerDevice.ImageResultEnabled	=	true;
readerDevice.SVGResultEnabled	=	true;
readerDevice.DataManSystem.SendCommand("SET	IMAGE.SIZE	0");

Scanning	Barcodes

With	a	properly	configured	reader,	you	are	now	ready	to	scan	barcodes.	This	can	be	done
by	calling	the	startScanning	method	from	your	ReaderDevice	object.

What	happens	next	is	based	on	the	type	of	Reader	Device	and	how	it	has	been
configured,	but	in	general:

If	using	an	MX	Device,	the	user	can	now	press	a	trigger	button	on	the	device	to	turn
the	scanner	on	and	read	a	barcode;
If	using	the	camera	reader,	the	cmbSDK	starts	the	camera,	displays	the	configured
live-stream	preview,	and	begins	analyzing	the	frames	from	the	video	stream,	looking
for	a	configured	barcode	symbology.

Scanning	stops	under	one	of	the	following	conditions:

The	reader	found	and	decoded	a	barcode;
The	user	released	the	trigger	or	pressed	the	stop	button	on	the	live-stream	preview

t it le:	Xamarin	(v2.1.x)	;	ver:	2.7.x 33	/	38

screen;
The	camera	reader	timed	out	with	out	finding	a	barcode;
The	application	itself	calls	the	stopScanning()	method.

When	a	barcode	is	decoded	successfully	(the	first	case),	you	will	receive	a	ReadResult s
iterable	result	collection	object	in	ReaderDevice	listener	method.

If	your	MX	Device	is	configured	to	work	with	multi	code	scanning,	you	can	access	all
the	scanned	results	from	the	result s.SubResult s	property	which	is	an	array	that
contains	ReaderResult 	objects	and	it	will	be	null	if	single	code	scanning	is	used.

Example

public	void	DidReceiveReadResultFromReader(CMBReaderDevice	reader,	CMBReadResults	readResults)
								{
												btnScan.SetTitle("START	SCANNING",	UIControlState.Normal);
												isScanning	=	false;

												tableData.RemoveAllObjects();

												if	(readResults.SubReadResults	!=	null	&&	readResults.SubReadResults.Length	>	0)
												{
																tableData.AddObjects(readResults.SubReadResults);
																tvResults.ReloadData();

												}
												else	if	(readResults.ReadResults.Length	>	0)	{
																tableData.Add(readResults.ReadResults[0]);
												}

												tableSource.SetItems(tableData);
												tableSource.displayResult(0);

												tvResults.ReloadData();
												tvResults.SelectRow(NSIndexPath.FromRowSection(0,0),	false,	UITableViewScrollPosition.No
ne);
								}

Disconnect ing	from	Device

There	may	be	cases	when	a	device	disconnects	due	to	low	battery	condition	or	manual
cable	disconnection.	These	cases	can	be	detected	by	the
ConnectionStateDidChangeOfReader	callback	of	the	ICMBReaderDeviceDelegate.

t it le:	Xamarin	(v2.1.x)	;	ver:	2.7.x 34	/	38

Note:	The	AvailabilityDidChangeOfReader	method	is	also	called	when	the	device
becomes	physically	unavailable.	It	means	that	the	(re)connection	is	not	possible.	Always
check	the	availability	property	of	the	ReaderDevice	object	before	trying	to	call	the
ConnectWithCompletion	method.

Licensing	the	SDK

If	you	plan	to	use	the	cmbSDK	to	do	mobile	scanning	with	a	smartphone	or	a	tablet	(with
no	MX	mobile	terminal),	then	the	SDK	requires	the	installation	of	a	license	key.	Without	a
license	key,	the	SDK	will	still	operate,	although	scanned	results	will	be	obfuscated	(the
SDK	will	randomly	replace	characters	in	the	scan	result	with	an	asterisk	character).

Contact	your	Cognex	Sales	Representative	for	information	on	how	to	obtain	a	license	key
including	trial	licenses	which	can	be	used	for	30	days	to	evaluate	the	SDK.

After	obtaining	your	license	key	there	is	two	ways	to	add	your	license	key	in	application.

The	first	one	is	to	add	it	as	a	key	with	a	value	in	the	project	specific	Inf o.plist 	file:

<key>MX_MOBILE_LICENSE</key>
<string>Your	license	key</string>

And	the	second	way	to	implement	an	activation	is	directly	from	the	code	when	you
create	your	readerDevice:

....
readerDevice	=	CMBReaderDevice.ReaderOfDeviceCameraWithCameraMode(CDMCameraMode.NoAimer,	CDMPreviewO
ption.Defaults,	ivPreview,	"YOUR_MX_MOBILE_LICE");

	

Xamarin.Forms

Gett ing	Started

In	the	following	sections	we	will	explain	how	our	sample	app	is	developed	step	by	step.

Open	Visual	Studio	and	follow	these	steps:

1.	Go	to	File	->	New	->	Project .

t it le:	Xamarin	(v2.1.x)	;	ver:	2.7.x 35	/	38

2.	Create	Cross-Plat f orm	App(Xamarin.Forms).

After	loading,	see	Android	Getting	Started	section	to	see	how	to	setup	references,	and
the	manif est .xml	for	the	Android	platform,	or	iOS	Getting	Started	and	Inf o.plist 	file

https://cmbdn.cognex.com/v2.1.x/knowledge/xamarin#xamarin.android/getting-started
https://cmbdn.cognex.com/v2.1.x/knowledge/xamarin#xamarin.ios

t it le:	Xamarin	(v2.1.x)	;	ver:	2.7.x 36	/	38

for	the	iOS	platform.

	

Portable	Project

In	the	portable	project	we	create	one	page	(MainPage)	where	we	create	a	layout	for	a
scanning	page	and	one	class(CameraPreview.cs)	that	will	inherit	from	View	control	and
have	some	properties	and	events.

CameraPreview	control	is	added	in	MainPage:

...

<Grid	x:Name="gridCamera">
									<local:CameraPreview	x:Name="cameraPreview"	SelectedDevice="MobileCamera"	ResultReceived="C
ameraPreview_ResultReceived"	ConnectionStateChanged="CameraPreview_ConnectionStateChanged"	/>
									<Label	x:Name="lblStatus"	Text="	Disconnected	"	TextColor="White"	FontSize="11"	VerticalOpt
ions="Start"	HorizontalOptions="End"	HorizontalTextAlignment="Center"	BackgroundColor="#ff4444"	Marg
in="0,2,5,0"	/>
</Grid>

...

In	Android	and	iOS	platform	specific	projects	we	have	custom	renderers
(ScannerView.cs)	for	this	class,	and	with	that	we	can	use	native	elements	in	portable
project.

Custom	Renderer

ViewRenderer	in	Android	platform	specific	project:

protected	override	void	OnElementChanged(ElementChangedEventArgs<CameraPreview>	e)
								{
												base.OnElementChanged(e);

												if	(e.OldElement	!=	null	||	Element	==	null)
												{
																return;
												}

												rlMainContainer	=	new	RelativeLayout(Context);
												rlMainContainer.SetMinimumHeight(50);
												rlMainContainer.SetMinimumWidth(100);
												rlMainContainer.LayoutParameters	=	new	RelativeLayout.LayoutParams(RelativeLayout.Layout
Params.MatchParent,	RelativeLayout.LayoutParams.MatchParent);

https://developer.xamarin.com/guides/xamarin-forms/application-fundamentals/custom-renderer/

t it le:	Xamarin	(v2.1.x)	;	ver:	2.7.x 37	/	38

												ivPreview	=	new	ImageView(Context);
												ivPreview.SetMinimumHeight(50);
												ivPreview.SetMinimumWidth(100);
												ivPreview.LayoutParameters	=	new	RelativeLayout.LayoutParams(RelativeLayout.LayoutParams
.MatchParent,	RelativeLayout.LayoutParams.MatchParent);
												ivPreview.SetScaleType(ImageView.ScaleType.FitCenter);

												rlMainContainer.AddView(ivPreview);

												if	(Control	==	null)
																SetNativeControl(rlMainContainer);

												MainActivity.instance.setActiveReader(Control,	Element);
								}

In	MainAct ivity	in	Android	platform	specific	project	we	are	handling	with	reader	device
object	(almost	the	same	like	ScannerActivity	for	Xamarin.Android)	and	from	custom
renderer	we	are	just	call	setActiveReader	method	and	pass	Control(native	RelativeLayout
element)	and	Element(CameraPreview	object	which	is	initialized	from	MainPage).

ViewRenderer	in	iOS	platform	specific	project:

protected	override	void	OnElementChanged(ElementChangedEventArgs<XamarinFormsDataMan.CameraPreview>	
e)
								{
												base.OnElementChanged(e);

												if	(e.OldElement	!=	null	||	Element	==	null)
												{
																return;
												}

												container	=	new	UIView();
												ivPreview	=	new	UIImageView();
												ivPreview.ContentMode	=	UIViewContentMode.ScaleToFill;
												ivSVG	=	new	UIImageView();
												ivSVG.ContentMode	=	UIViewContentMode.ScaleToFill;

												container.AddSubview(ivPreview);
												container.AddSubview(ivSVG);

												ivPreview.Frame	=	new	CoreGraphics.CGRect(0,	0,	container.Frame.Size.Width,	container.Fr
ame.Size.Height);
												ivPreview.AutoresizingMask	=	UIViewAutoresizing.FlexibleHeight	|	UIViewAutoresizing.Flex
ibleWidth;

												ivSVG.Frame	=	new	CoreGraphics.CGRect(0,	0,	container.Frame.Size.Width,	container.Frame.
Size.Height);
												ivSVG.AutoresizingMask	=	UIViewAutoresizing.FlexibleHeight	|	UIViewAutoresizing.Flexible
Width;

												if	(Control	==	null)
																SetNativeControl(container);

												AppDelegate.instance.setActiveReader(Control,	Element);

https://cmbdn.cognex.com/v2.1.x/knowledge/xamarin#xamarin.android/scanner-activity

t it le:	Xamarin	(v2.1.x)	;	ver:	2.7.x 38	/	38

								}

In	AppDelegate	in	iOS	platform	specific	project	we	are	handling	with	reader	device
object	(almost	the	same	like	View	Controller	for	Xamarin.iOS)	and	from	custom	renderer
we	are	just	call	setActiveReader	method	and	pass	Control(native	UIImageView	element)
and	Element(CameraPreview	object	which	is	initialized	from	MainPage).

Conf iguring	ReaderDevice,	Connect ing	to	Device,	Scanning	Barcodes	and
Disconnect ing	f rom	Device	are	the	same	and	you	can	read	about	them	in
Xamarin.Android	and	Xamarin.iOS	sections.

Licensing	the	SDK

Licensing	the	SDK	must	also	be	implemented	separately	in	Android	and	in	iOS	projects.

	

For	the	Android	oriented	solution	please	check	this	link,	and	for	the	iOS	solution	you	can
refer	to	this	resource.

https://cmbdn.cognex.com/v2.1.x/knowledge/xamarin#xamarin.ios/view-controller
https://cmbdn.cognex.com/v2.1.x/knowledge/xamarin#xamarin.android/getting-started
https://cmbdn.cognex.com/v2.1.x/knowledge/xamarin#xamarin.ios/getting-started
https://cmbdn.cognex.com/v2.1.x/knowledge/xamarin#xamarin.android/licensing-the-sdk
https://cmbdn.cognex.com/v2.1.x/knowledge/xamarin#xamarin.ios/licensing-the-sdk

