
1 / 34

Cognex Mobile Barcode SDK for iOS (v2.2.x)

Overview

Cognex Mobile Barcode SDK (cmbSDK) is a tool for developing mobile barcode scanning applications. CmbSDK is based on Cognex's DataMan
technology and the Manatee Works Barcode Scanning SDK and it allows you to create barcode scanning applications for mobile devices. Mobile
devices used for barcode scanning range from smartphones to the MX Series industrial barcode readers. CmbSDK abstracts the device through a
ReaderDevice connection layer. Once the application establishes its connection with the reader, a single, unified API is used as interface to configure
the device, eliminating the need to write too much conditional code.

CmbSDK provides two basic ReaderDevice connection layers:

MX reader for barcode scanning with devices like the MX-1000 and MX-1502
Camera reader for barcode scanning with the built-in camera of the mobile device or an MX-100 barcode reader (iOS only).

Barcode Scanning with an MX Mobile Terminal

The cmbSDK supports Cognex’s MX Series Mobile Terminals and some of their features using cmbSDK are the following:

Hardware trigger: MX Mobile Terminals include two built-in triggers for barcode scanning. They also support a pistol grip with trigger that is an
optional accessory.
Illumination and aiming: MX Mobile Terminals have built-in illumination and aiming, making it unnecessary to have a live preview on the
smartphone's screen.
Configurations: You can export and import configuration sets to MX Mobile Terminals using Cognex’s DataMan Setup Tool for Windows, the Quick
Setup mobile application or cmbSDK.
High-capacity battery: MX Mobile Terminals have an integrated battery that powers the MX scanning engine and the mobile device. The optional
pistol grip includes a second battery that doubles the power capacity of the MX Mobile Terminal.

Getting your MX Mobile Terminal Enabled App into the App Store

Before submitting your MX-1000 Enabled app to the Apple App Store, your app must be added to the Cognex MX-1000 MFi product plan. This is a
critical step for your app to be approved by Apple. (If your app isn’t added to the plan, Apple will reject it.)

Please submit a request on https://cmbdn.cognex.com/mfi/apply for each iOS app you plan to submit to the App Store.

Name of app as it will appear in App Store
App version number
App Store category
Bundle identifier
External Accessory protocols (which must include at least com.cognex.dmcc)
Brief functional overview of app and its key features
Name of the developer that will submit the app to the App Store
Expected release date

You will also need to update your app’s notes before submitting to the App Store. Please follow the instructions to do this below:

Log in to iTunes Connect
Click on "My Apps"
Select your app
Click on the app version on the left side of the screen
Scroll down to "App Review Information"
Update "Notes" with:

The related product plan is:

Accessory Name: DataMan 9050

Product Plan ID: 144826-0004

Status: Active Type: Manufacturing Process

Phase: Production

https://cmbdn.cognex.com/mfi/apply

2 / 34

Click "Save"
Once you've completed all changes, click the "Submit for Review" button at the top of the App version information page.

Once this information has been received, Cognex will add your app to the MX-1000 product plan. You will receive an email confirmation when this step
is completed at which time you can submit your app to Apple directly.

Debugging on MX Mobile Terminal

Normally you connect your mobile device (phone or tablet) to your PC via the USB or lightning port to start debugging. If an MX Mobile Terminal is
attached to your mobile device via the USB or lightning port while your application is running, you need to debug your application via Wi-Fi.

Debugging on iPhone using XCode:

Requirements:

XCode 9 or newer
iPhone running iOS 11 or newer

If you are running your application with XCode, make sure your device is plugged in via lightning cable and enable Connect via network on your mobile
device as follows.

1. Open XCode and choose Window > Devices and Simulators from the top menu.
2. Select your device from the connected list of devices on the left side and check the Connect via network checkbox.

Now you can close the Devices window and run your application without using the lightning cable.

Debugging on iPhone using Xamarin or Visual Studio:

1. Make sure your iPhone is connected using the lightning cable and open your Xamarin.IOS project.
2. Choose Options by right-clicking on the project file.
3. Navigate to iOS Debug from the left menu and check the Debug over WiFi checkbox.

Launching the application is still done through the USB cable, so the initial launch requires you to have the cable plugged.

Once started, you can safely unplug and continue your debugging session over Wi-Fi.

Barcode Scanning with a Smartphone

3 / 34

Barcode Scanning with a Smartphone or Tablet

The differences in the capabilities of smartphones as barcode scanning devices result in a user experience different from purpose-built scanners,
impacting the design of the mobile barcode scanning application. By following a few simple guidelines, you can develop applications with the cmbSDK
that work the same way when using an MX Mobile Terminal or the built-in camera of a mobile device.

To initiate barcode scanning without a dedicated hardware trigger, see Mobile Device Triggering.
To aim for barcode scanning with a smartphone that does not have an aimer, see Mobile Device Aiming.
To choose the most suitable orientation for barcode scanning, see Mobile Device Orientation.
To reduce the CPU usage of the mobile device when it performs image analysis and barcode decoding, see Optimizing Mobile Device
Performance.

Mobile Device Triggering

Without a hardware trigger, mobile devices must use alternative methods to initiate barcode scanning. The cmbSDK supports three methods to trigger
barcode scanning:

Application or workflow driven trigger: The application code or the business logic/workflow of the application invokes the scanning module. In
simple programming terms, it is calling a function like startScanner().
Virtual trigger: To start or stop the scanning process the application provides a button on the screen. Depending on the application design, you
need to press and hold the virtual button to keep the scanner running, this invokes the scanning module.
Simulated trigger: Press one of the volume buttons to start or stop the scanning process just like when you pull a trigger on a purpose-built
scanner.

Mobile Device Aiming

The built-in camera provides a live-stream preview on the display of the mobile device for barcode aiming. Reposition the mobile device until the
barcode appears in the field of view of the built-in camera and the application decodes it. CmbSDK provides a built-in preview control that can be
displayed in partial or full screen, and in either portrait or landscape orientation.

The cmbSDK also supports passive aimers: devices attached to the mobile device or its case that use the LED flash of the device as a light source to
project an aiming or targeting pattern. The mobile device can project an aimer pattern similar to a purpose-built scanner so live-preview is not needed.
However, by using the LED flash as an aimer, general scanning illumination is not available.

In addition to passive aimers, cmbSDK also supports an active aimer that has its own built-in LEDs for illumination and aiming: the MX-100 Barcode
Reader. The MX-100 is a mobile device accessory for iOS smartphones attached to the mobile device with a mobile device case. The built-in LED of
the MX-100 projects a green dot to help in reading the barcode.

Mobile Device Orientation

The cmbSDK supports portrait orientation, landscape orientation and auto-rotation for both the presentation of the barcode preview and the scan
direction. Mobile devices can scan most barcodes regardless of the orientation of the application and/or the mobile device.

PORTRAIT OR
LANDSCAPE PORTRAIT ONLY LANDSCAPE ONLY

Most barcodes can be
scanned in either portrait
or landscape orientation.

Most well defined and moderately sized barcodes can be
scanned in a portrait orientation, which is the most

natural way to hold the mobile device.

Example: QR, Data Matrix, Maxicode.

Long, dense, or poorly formed barcodes are
easier to scan in a landscape orientation,

which is of higher resolution.

Example: PDF417.

Optimizing Mobile Device Performance

Mobile devices are an ideal platform for barcode decoding. The cmbSDK is optimized for mobile environment, but image analysis and barcode
decoding is still a CPU intensive activity. Since these processes share the mobile device's CPU with the mobile operating system (OS), services, and
other applications, these processes optimize your barcode scanning application and limit it to only using the features of the cmbSDK that they need.

To optimize your application:

https://cmbdn.cognex.com/v2.2.x/knowledge/cognex-mobile-barcode-sdk-for-android/barcode-scanning-with-a-smartphone-android/mobile-device-triggering
https://cmbdn.cognex.com/v2.2.x/knowledge/cognex-mobile-barcode-sdk-for-android/barcode-scanning-with-a-smartphone-android/mobile-device-aiming
https://cmbdn.cognex.com/v2.2.x/knowledge/cognex-mobile-barcode-sdk-for-android/barcode-scanning-with-a-smartphone-android/mobile-device-orientation
https://cmbdn.cognex.com/v2.2.x/knowledge/cognex-mobile-barcode-sdk-for-android/barcode-scanning-with-a-smartphone-android/optimizing-mobile-device-performance

4 / 34

Enable decoding only for the barcode types the application needs to scan. The cmbSDK supports the decoding of almost 40 different barcode types
and subtypes, enabling all results in low performance and unexpected errors.
Do not enable certain symbologies and/or advanced features at the same time.
Optimize your camera resolution. By default, the cmbSDK uses HD images for barcode decoding.
Use an appropriate decoder effort level. The cmbSDK has a configurable effort level that controls how aggressively it performs image analysis. The
cmbSDK uses a default value (level 2) that is sufficient for most barcodes. Using a higher level can result in better decoding of poorer quality
barcodes, resulting in slower performance.

No barcode symbologies are enabled by default, when the cmbSDK is initialized for use with the mobile device's built-in camera.

Using cmbSDK

Using cmbSDK in XCode

To set up your application to use the iOS cmbSDK:

1. Open XCode and start a new project.

2. Add the following lib and frameworks to your project:

* SystemConfiguration.framework

* AVFoundation.framework

* CoreGraphics.framework

* CoreMedia.framework

* CoreVideo.framework

* MediaPlayer.framework

* Security.framework

* AudioToolbox.framework

* libDataManSDK.a

To use device discovery, you may need to add CocoaAsyncSocket.framework located in dependencies of cmbSDK zip file to the
"Embedded Binaries" section of the General tab in Xcode.

3. Go to your project's Info.plist file and add the Privacy - Camera Usage Description or NSCameraUsageDescription to display a message
about how your application uses the camera of the user's mobile device.

Creating a Swift Bridging Header

To write your app in Swift, you need a bridging header to be able to use the cmbSDK:

1. Create the header by selecting File -> New File -> Header File
2. Save the header file and name it for example YourApp-Bridging-Header
3. Open your project settings, under the "Build Settings" tab search for "Objective-C Bridging Header" and add

"$(PROJECT_DIR)/YourApp/YourApp-Bridging-Header.h". Replace YourApp with the name of your app, and YourApp-Bridging-Header.h with the
name of your bridging header.

4. Open your bridging header and import the headers that you would like to use from the cmbSDK. For example, import the following headers for
basic functionality:

#import "CMBReaderDevice.h"

#import "CMBReadResult.h"

#import "CMBReadResults.h"

5 / 34

Writing a Mobile Application

The cmbSDK has been designed to provide a high-level, abstract interface for supported scanning devices. This includes not only the MX series of
mobile terminals, but also for applications that intend to use the mobile device camera as the imaging device. The intricacies of communicating with and
managing these devices is encapsulated within the SDK itself: leaving the application to just connect to the device of choice, then using it.

The primary interface between your application and a supported barcode scanning device is the CMBReaderDevice class. This class represents the
abstraction layer to the device itself, handling all communication as well as any necessary hardware management (e.g., for smartphone scanning).

Perform the following steps to use the cmbSDK:

1. Initialize a Reader Device for the type of device you want to use (MX reader or camera reader).

2. Connect the Reader Device.

3. Configure the reader (if necessary).

4. Start scanning.

Initialization, connection, and configuration generally need to be performed only once in your application, except for the following cases:

An MX reader can become disconnected (times out from disuse,dead battery,etc.). A method has been provided to handle this case, and is
discussed in a later section.
Your application has been designed to allow the user to change devices.The cmbSDK is explicitly designed to support this: your application simply
disconnects from the current device and establishes a new connection to a different device. The provided sample application has been written to
explicitly demonstrate this capability.

Setting up an Application to Use cmbSDK for iOS

Perform the following steps to set up and start using cmbSDK:

1. Import the following package members, or just the classes you use:

Swift
Objective-C

import DataManFW

#import <DataManFW/DataManFW.h>

2. According to your needs:

If you want to show partial camera preview, you need a View container, for example a UIView, otherwise if you want to use full screen preview
(default) you don't need any additional containers. For example if we want to use partial view in our sample application add a UIView in the
Main storyboard with the desired dimensions and constraints, and use it in reader device constructor (previewView parameter) when reader
device is initialized.
If you want to display the last scanned image, add a UIImageView for container instead of UIView for showing the last frame of a preview or
scanning session.

If you want to display the scanned result as a text, you need a UILabel.

3. Set up the following interfaces to monitor the connection state of the reader and receive information about the read code:

Swift
Objective-C

https://cmbdn.cognex.com/v2.2.x/knowledge/-cognex-mobile-barcode-sdk-for-ios/using-cmbsdk/using-the-camera-reader-or-mx-100-barcode-scanner

6 / 34

// MARK: OBSERVER METHODS

//--

// When an applicaiton is suspended, the connection to the scanning device is

// automatically closed by iOS; thus when we are resumed (become active) we

// have to restore the connection (assuming we had one). This is the observer

// we will use to do this.

//--

@objc func appBecameActive() {

 if readerDevice != nil && readerDevice.availability == CMBReaderAvailibilityAvailable && readerDevice.connectionState != CM
 readerDevice.connect(completion: { error in

 if error != nil {

 // handle connection error

 }

 })

 }

}

// MARK: VIEWCONTROLLER METHODS

override func viewDidLoad() {

 super.viewDidLoad()

 // Add our observer for when the app becomes active (to reconnect if necessary)

 NotificationCenter.default.addObserver(self, selector: #selector(self.appBecameActive), name:UIApplication.didBecomeActiveNo
}

// MARK: MX Delegate methods

// This is called when a MX-1xxx device has became available (USB cable was plugged, or MX device was turned on),

// or when a MX-1xxx that was previously available has become unavailable (USB cable was unplugged, turned off due to inactivity
func availabilityDidChange(ofReader reader: CMBReaderDevice) {

 self.clearResult()

 if (reader.availability != CMBReaderAvailibilityAvailable) {

 showAlert(title: nil, message: "Device became unavailable")

 } else if (reader.availability == CMBReaderAvailibilityAvailable) {

 self.connectToReaderDevice()

 }

}

// This is called when a connection with the self.readerDevice has been changed.

// The self.readerDevice is usable only in the "CMBConnectionStateConnected" state

func connectionStateDidChange(ofReader reader: CMBReaderDevice) {

 self.isScanning = false

 self.clearResult()

 if self.readerDevice.connectionState == CMBConnectionStateConnected {

 // We just connected, so now configure the device how we want it

 self.configureReaderDevice()

 }

 self.updateUIByConnectionState()

}

// This is called after scanning has completed, either by detecting a barcode, canceling the scan by using the on-screen button
func didReceiveReadResult(fromReader reader: CMBReaderDevice, results readResults: CMBReadResults!) {

 self.isScanning = false

 self.btnScan.isSelected = false

 if (readResults.subReadResults != nil) && readResults.subReadResults.count > 0 {

 scanResults = readResults.subReadResults as! [CMBReadResult]

 self.tvResults.reloadData()

 } else if readResults.readResults.count > 0 {

 scanResults = [readResults.readResults.first as! CMBReadResult]

 self.tvResults.reloadData()

 }

}

#pragma mark OBSERVER METHODS

//--

// When an applicaiton is suspended, the connection to the scanning device is

// automatically closed by iOS; thus when we are resumed (become active) we

// have to restore the connection (assuming we had one). This is the observer

// we will use to do this.

//--

-(void)appBecameActive {

 if (self.readerDevice != nil &&

7 / 34

 self.readerDevice.availability == CMBReaderAvailibilityAvailable &&

 self.readerDevice.connectionState != CMBConnectionStateConnecting &&

 self.readerDevice.connectionState != CMBConnectionStateConnected)

 {

 [self.readerDevice connectWithCompletion:^(NSError *error) {

 if (error) {

 // handle connection error

 }

 }];

 }

}

#pragma mark VIEWCONTROLLER METHODS

-(void)viewDidLoad {

 [super viewDidLoad];

 // Add our observer for when the app becomes active (to reconnect if necessary)

 [[NSNotificationCenter defaultCenter] addObserver:self

 selector:@selector(appBecameActive)

 name:UIApplicationDidBecomeActiveNotification object:nil];

}

#pragma mark MX Delegate methods

// This is called when a MX-1xxx device has became available (USB cable was plugged, or MX device was turned on),

// or when a MX-1xxx that was previously available has become unavailable (USB cable was unplugged, turned off due to inactivity
- (void)availabilityDidChangeOfReader:(CMBReaderDevice *)reader

{

 [self clearResult];

 if (reader.availability != CMBReaderAvailibilityAvailable)

 {

 [self showAlertWithTitle:@"Device became unavailable" message:nil];

 }

 else if (self.readerDevice.availability == CMBReaderAvailibilityAvailable) {

 [self connectToReaderDevice];

 }

}

// This is called when a connection with the self.readerDevice has been changed.

// The self.readerDevice is usable only in the "CMBConnectionStateConnected" state

- (void)connectionStateDidChangeOfReader:(CMBReaderDevice *)reader

{

 self.isScanning = NO;

 [self clearResult];

 if (self.readerDevice.connectionState == CMBConnectionStateConnected){

 // We just connected, so now configure the device how we want it

 [self configureReaderDevice];

 }

 [self updateUIByConnectionState];

}

// This is called after scanning has completed, either by detecting a barcode, canceling the scan by using the on-screen button
- (void)didReceiveReadResultFromReader:(CMBReaderDevice *)reader results:(CMBReadResults *)readResults

{

 self.isScanning = false;

 [self.btnScan setSelected:self.isScanning];

 if (readResults.subReadResults && readResults.subReadResults.count > 0) {

 scanResults = readResults.subReadResults;

 [self.tvResults reloadData];

 } else if (readResults.readResults.count > 0){

 CMBReadResult *result = readResults.readResults.firstObject;

 scanResults = @[result];

 [self.tvResults reloadData];

 }

}

4. Instantiate a CMBReaderDevice object.

Using the MX Reader

8 / 34

Initializing the Reader Device for use with an MX mobile terminal like the MX-1000 or MX-1502 is easy: simply create the reader device using the MX
device method (it requires no parameters), and set the appropriate delegate (normally self):

Swift
Objective-C

let readerDevice:CMBReaderDevice = CMBReaderDevice.readerOfMX()

readerDevice.delegate = self

CMBReaderDevice *readerDevice = [CMBReaderDevice readerOfMXDevice];

readerDevice.delegate = self;

The availability of the MX mobile terminal can change when the device turns ON or OFF, or if the lightning cable gets connected or disconnected. You
can handle those changes using the following CMBReaderDeviceDelegate method.

Swift
Objective-C

func availabilityDidChange(ofReader reader: CMBReaderDevice)

- (void)availabilityDidChangeOfReader:(CMBReaderDevice *)reader

Using the Camera Reader or MX-100 Barcode Scanner

Barcode scanning with the built-in camera of the mobile device can be more complex than with an MX mobile terminal. The cmbSDK supports several
configurations to provide the maximum flexibility. This includes support of optional, external aimers/illumination, as well as the ability to customize the
appearance of the live-stream preview.

To scan barcodes using MX-100 or the built-in camera of the mobile device, initialize the CMBReaderDevice object using the
readerOfDeviceCameraWithCameraMode static method. The camera reader has several options when initialized. The following parameters are
required:

* CDMCameraMode

* CDMPreviewOption

* UIView

The CameraMode parameter is of the type CDMCameraMode (defined in CDMDataManSystem.h), and it accepts one of the following values:

kCDMCameraModeNoAimer: This initializes the reader to use a live-stream preview (on the mobile device screen) so the user can position the
barcode within the camera’s field of view for detection and decoding. Use this mode when the mobile device does not have an aiming accessory.
kCDMCameraModePassiveAimer: This initializes the reader to use a passive aimer, which is an accessory that is attached to the mobile device or
a mobile device case that uses the built-in LED flash of the mobile device as a light source for projecting an aiming pattern. In this mode, no live-
stream preview is presented on the device screen, since an aiming pattern will be projected.
kCDMCameraModeActiveAimer: This initializes the reader to use an active aimer, such as the MX-100, which is an accessory that is attached to
the mobile device or a mobile device case. The active aimer has a built in LEDs for projecting an aiming pattern, and for illumination, and are
powered by a built in battery. In this mode, no live-stream preview is presented on the device screen, since an aiming pattern will be projected.
kCDMCameraModeFrontCamera: This initializes the reader to use the front facing camera of the mobile device, if available (not all mobile devices
have a front camera). This is an unusual, but possible configuration. Most front-facing cameras do not have auto focus and illumination, and provide
significantly lower resolution images. This option should be used with care. In this mode, illumination is not available.

All of the above modes provide the following default settings for the reader:

The rear camera is used.
The zoom feature is available and a button to control it is visible on the live-stream preview (if displayed).

9 / 34

The simulated hardware trigger is disabled.
When startScanning() is called, the decoding process is started. (Seek CDMPreviewOptionPaused for more details.)

Based on the selected mode, the following additional options and behaviors are set:

kCDMCameraModeNoAimer (NoAimer)

The live-stream preview is displayed when the startScanning() method is called.
Illumination is available and a button to control it is visible on the live-stream preview.
If commands are sent to the reader for aimer control, they will be ignored.

kCDMCameraModePassiveAimer(PassiveAimer)

The live-stream preview will not be displayed when the startScanning() method is called.
Illumination is not available and the live-stream preview will not have an illumination button.
If commands are sent to the reader for illumination control, they will be ignored, since it is assumed in this mode that the built-in LED of the
mobile device is being used for the aimer.

kCDMCameraModeActiveAimer(MX-100)

The live-stream preview will not be displayed when the startScanning() method is called.
Illumination is available and if a preview option for camera preview is used, the preview will have an illumination button.
If commands are sent to the reader for illumination or aimer control, they will be accepted.

kCDMCameraModeFrontCamera(FrontCamera)

The live-stream preview is displayed when the startScanning() method is called.
The front camera is used.
Illumination is not available, and the live-stream preview will not have an illumination button. o If commands are sent to the reader for aimer or
illumination control, they will be ignored.

The previewOptions parameter (of type CDMPreviewOption, defined in CDMDataManSystem.h) is used to change the reader’s default values or
override defaults derived from the selected CameraMode. Multiple options can be specified by OR-ing them when passing the parameter. The available
options are the following:

kCDMPreviewOptionDefaults: Use this option to accept all defaults set by the CameraMode.
kCDMPreviewOptionNoZoomBtn: This option hides the zoom button on the live-stream preview, preventing a user from adjusting the zoom of the
mobile device camera.
kCDMPreviewOptionNoIllumBtn: This hides the illumination button on the live-stream preview, preventing a user from toggling the illumination.
kCDMPreviewOptionHwTrigger: This enables a simulated hardware trigger (the volume button) for starting scanning on the mobile device. This
button only starts scanning when pressed. It does not need to be held like a more traditional purpose-built scanner’s trigger. Pressing the button a
second time does not stop the scanning process.
kCDMPreviewOptionPaused: If using a live-stream preview, when this option is set, the preview will be displayed when the startScanning()
method is called, but the reader will not start decoding (i.e. looking for barcodes) until the user presses the on-screen scanning button to actually
start the scanning process.
kCDMPreviewOptionAlwaysShow: This forces alive-stream preview to be displayed, even if an aiming mode has been selected (e.g.
CameraMode == kCDMCameraModePassiveAimer)
kCDMPreviewOptionPessimisticCaching: Used only when CameraMode == kCDMCameraModeActiveAimer, this will read the settings from the
ActiveAimer when the app resumes from background, in case the aimer settings were changed from another app.
kCDMPreviewOptionHighResolution: This will use the device camera in higher resolution. The default resolution is 1280x720. With this option is
enabled, the resolution will be 1920x1080 on devices that support it, and the default one on devices that do not. This can help with scanning small
barcodes, but will increase the decoding time since there is a lot more data to process in each frame.
kCDMPreviewOptionHighFrameRate: This will use the device camera in 60 FPS instead of the default 30, and provide a much smoother camera
preview.

The last parameter of type UIView is optional and is used as a container for the camera preview. If the parameter is left nil, a full screen preview will be
used.

Examples:

Create a reader with no aimer and a full screen live-stream preview:

Swift
Objective-C

10 / 34

let readerDevice:CMBReaderDevice = CMBReaderDevice.readerOfDeviceCamera(with: CDMCameraMode.noAimer, previewOptions:CDMPreviewOption
readerDevice.delegate = self

CMBReaderDevice *readerDevice = [CMBReaderDevice readerOfDeviceCameraWithCameraMode:kCDMCameraModeNoAimer previewOptions:kCDMPreview
readerDevice.delegate = self;

Create a reader with no aimer, no zoom button, and using a simulated trigger:

Swift
Objective-C

let readerDevice:CMBReaderDevice = CMBReaderDevice.readerOfDeviceCamera(with: CDMCameraMode.noAimer, previewOptions:[CDMPreviewOptio
readerDevice.delegate = self

CMBReaderDevice *readerDevice = [CMBReaderDevice readerOfDeviceCameraWithCameraMode:kCDMCameraModeNoAimer previewOptions:(kCDMPrevie
readerDevice.delegate = self;

Connecting to the Device

After initializing the Reader Device and setting a delegate to handle responses from the reader, you are ready to connect using
connectWithCompletion:

Swift
Objective-C

// Make sure the device is turned ON and ready

if self.readerDevice.availability == CMBReaderAvailibilityAvailable {

 // create the connection between the readerDevice object and device

 self.readerDevice.connect(completion: { (error:Error?) in

 if error != nil {

 // handle connection error

 }

 })

}

// Make sure the device is turned ON and ready

if (readerDevice.availability == CMBReaderAvailibilityAvailable) {

 // create the connection between the readerDevice object and device

 [readerDevice connectWithCompletion:^(NSError *error) {

 if (error) {

 // handle connection error

 }

 }];

}

If everything was done correctly, connectionStateDidChangeOfReader in the delegate will be called, where you can check the connection status in your
Reader Device's connectionState parameter. It should be CMBConnectionStateConnected, which means that you have successfully made the
connection to the Reader Device, and can begin using the Cognex Mobile Barcode SDK.

Configuring the Reader Device

After connecting to the scanning device, you may want (or need) to change some of its settings. The cmbSDK provides a set of high-level, device
independent APIs for setting and retrieving the current configuration of the device.

11 / 34

Like in the case of initializing the Reader Device, there are some differences between using an MX reader and the camera reader for scanning. These
differences are detailed in the following sections.

MX Mobile Terminals

The MX family of mobile terminals provides sophisticated device configuration and management, including saved configurations on the device itself. In
general, these devices come from Cognex preconfigured for an exceptional out-of- the-box experience with most symbologies and features ready to
use.

When custom reconfiguration is desired, this is typically done using either the DataMan Setup Tool, or the Cognex Quick Setup as these tools can be
used to distribute saved configurations easily to multiple devices, thereby greatly simplifying configuration management.

However, it is still possible (and sometimes desirable) for the mobile application itself to configure the MX device:

You can have multiple scanning applications, each of which requires a different set of device settings.
You may simply want to guarantee that the certain options are in a “known” state and not rely on the fact that the device has been pre-configured
correctly.

Built-in Camera

Much like an MX mobile terminal, the cmbSDK employs a default set of options for barcode reading with the built-in camera of the mobile device,
providing a good out-of-box experience. However, there are two important differences to keep in mind:

The cmbSDK does not implement saved configurations for the camera reader. This means that every time an application that uses the camera
reader starts, it starts with its defaults.
The cmbSDK does not enable any symbologies by default: you as the application programmer must enable all barcode symbologies your
application needs to scan. By requiring the application program to explicitly enable only the symbologies it needs, the most optimal scanning
performance can be achieved.

MX-100

MX-100 is a device-case attachment that provides additional functionalities to the built-in camera, like aiming and better illumination control. Being a
hybrid of an MX device and a built in scanner, it has it's own settings for aimer intensity, illumination intensity and aimer modulation stored on the device
itself, and the rest of the settings, like symbologies, stored in the cmbSDK.

Here are a few things to keep in mind when using an MX-100 device:

By default, MX-100 does not require a license to work with the device camera, but one can be generated for tracking purposes, free of charge.
MX-100 comes pre-configured for a better out-of-the-box experience, and the cmbSDK has the following symbologies enabled by default:

Code 39
Code 128
Databar
PDF417
QR
UPC/EAN

cmbSDK is extended with a cache mechanism to strengthen optical communication with MX-100. The cache stores all MX-100 settings and it
is transparent and available in cmbSDK. Initializing and updating of the cache is the responsibility of cmbSDK itself. Different settings are stored in
different cache:

Persistent cache: These are settings/values that do not change very often (if at all) and SDK can cache on the iPhone for an extended period
of time. These items are the MX-100 Serial number, model number and firmware version. The persistent cache is updated in every 7 days.
Session cache: These are settings/values that may change while an application is using an MX-100 (though not likely), but should be read
from the MX-100 at least on SDK load/initial connection to the MX-100. These items are: Aimer intensity, Aimer modulation, Aimer timeout,
Illumination intensity, Illumination state. When the SDK initially connects to an MX-100, these values are read from the MX-100.

By default, the session cache will be maintained optimistically for the best performance. By this, we mean that the SDK will assume that
another application is not changing the settings of the aimer (SDK only needs to read the aimer's settings one time, when the initial connection
is established). If this happens, the cache may become out of sync with the aimer (e.g. another app on the same device changes a setting on
the aimer). cmbSDK gives the possibility to handle the session cache pessimistically which means that above written aimer's configuration is
loaded again each time when application is resumed. This behavior is accomplished by adding an additional option flag to the camera
connector: kCDMPreviewOptionPessimisticCaching.

Enabling Symbologies

12 / 34

Individual symbologies can be enabled using the following method of the Reader Device object:

-(void) setSymbology:(CMBSymbology)symbology

enabled:(bool)enabled

completion:(void (^)(NSError *error))completionBlock;

All symbologies used for the symbology parameter in this method can be found in CMBReaderDevice.h.

Examples

Swift
Objective-C

self.readerDevice.setSymbology(CMBSymbologyQR, enabled: true, completion: {(_ error: Error?) -> Void in

 if error != nil {

 // Failed to enable that symbology, Possible causes are: reader disconnected, out of battery or cable unplugged, or symbolog
 }

})

[readerDevice setSymbology:CMBSymbologyQR enabled:YES completion:^(NSError *error){

 if (error) {

 // Failed to enable that symbology, Possible causes are: reader disconnected, out of battery or cable unplugged, or symbolog
 }

}];

The same method can also be used to turn symbologies off:

Swift
Objective-C

self.readerDevice.setSymbology(CMBSymbologyUpcEan, enabled: false, completion: {(_ error: Error?) -> Void in

 if error != nil {

 // Failed to enable that symbology, Possible causes are: reader disconnected, out of battery or cable unplugged, or symbolog
 }

})

[readerDevice setSymbology:CMBSymbologyUpcEan enabled:NO completion:^(NSError *error){

 if (error) {

 // Failed to enable that symbology, Possible causes are: reader disconnected, out of battery or cable unplugged, or symbolog
 }

}];

Illumination Control

If your reader device is equipped with illumination lights (e.g. LEDs), you can control whether they are ON or OFF when scanning starts using the
following method of your Reader Device object:

Swift
Objective-C

self.readerDevice.setLightsON(true) { (error:Error?) in

 if error != nil {

 // Failed to enable illumination, Possible causes are: reader disconnected, out of battery or cable unplugged, or device doe
 }

}

13 / 34

[readerDevice setLightsON:YES completion:^(NSError *error) {

 if (error) {

 // Failed to enable illumination, Possible causes are: reader disconnected, out of battery or cable unplugged, or device doe
 }

}];

Keep in mind that not all devices and device modes supported by the cmbSDK allow for illumination control. For example, if using the built-in camera in
passive aimer mode, illumination is not available since the LED is being used for aiming.

Camera Zoom Settings

If built-in camera is used as reader device you have the possibility to configure zoom levels and define the way these zoom levels are used.

There are 3 zoom levels for the phone camera, which are:

normal: not zoomed (100%)
level 1 zoom (default 200% on iOS)
level 2 zoom (default 400% on iOS)

You can define these zoom levels with "SET CAMERA.ZOOM-PERCENT [100-MAX] [100-MAX]" command. It configures how far the two levels will
zoom in percentage. 100 is without zoom, and MAX (goes up to 1000) will zoom as far as the device is capable of. First argument is used for setting
level 1 zoom, and the second for level 2 zoom.

When you want to check current setting, you can do this with the "GET CAMERA.ZOOM-PERCENT" that returns two values: level 1 and level 2 zoom.

Example

Swift
Objective-C

readerDevice.dataManSystem()?.sendCommand("SET CAMERA.ZOOM-PERCENT 250 500")

[readerDevice.dataManSystem sendCommand:@"SET CAMERA.ZOOM-PERCENT 250 500"];

Note: Camera needs to be started within SDK at least once to have a valid maximum zoom level. It means that if you set the zoom level to 1000
and the device can go up to 600 only, "GET CAMERA.ZOOM-PERCENT" command returns 1000 as long as camera is not opened (e.g. with
[readerDevice startScanning];), but it returns 600 afterwards.

here is another command that sets which zoom level you want to use or returns the actual setting: "GET/SET CAMERA.ZOOM 0-2".

Possible values for the SET command are:

0 - normal (un-zoomed)
1 - zoom at level 1
2 - zoom at level 2

You can call this command before scanning or even during scanning, the zoom goes up to the level that was configured.

If the scanning is finished, the values is reset to normal behavior (0).

Example

Swift
Objective-C

readerDevice.dataManSystem()?.sendCommand("SET CAMERA.ZOOM 2")

[readerDevice.dataManSystem sendCommand:@"SET CAMERA.ZOOM 2"];

14 / 34

Camera Overlay Customization

When using the Mobile Camera, cmbSDK allows you to see the Camera Preview inside a preview container or in full screen. This preview also contains
an overlay, which can be customized in many ways. The cmbSDK camera overlay is built from buttons for zoom, flash and closing the scanner (in full
screen), a progress bar indicating the scan timeout, and lines on the corners of the camera preview.

To use the legacy camera overlay, which was used in the cmbSDK v2.0.x and the ManateeWorks SDK, use this property from MWOverlay before
initializing the readerDevice:

Swift
Objective-C

MWOverlay.setOverlayMode(Int32(OM_LEGACY.rawValue))

[MWOverlay setOverlayMode:OM_LEGACY];

The LEGACY overlay has limited customizability, so it is preferred to use the CMB overlay.

When using the CMB overlay, you can copy the layout files found in the Resources/layout directory into your project and modify them as you like. The
files are: CMBScannerPartialView.xib used when the scanner is started inside a container (partial view), and CMBScannerView.xib when the scanner
is started in full screen.

After copying the layout that you need, or both layouts, you can modify them, for example by changing the sizes, positions or color of the views,
removing views and even add your own views, like an overlay image. The views that are used by the cmbSDK (zoom, flash, close buttons, the view
used for drawing lines on the corners, and the progress bar) are accessed by the sdk using the Tag attribute, so while you can change everything about
those views, make sure the Tag attribute remains unchanged, otherwise the cmbSDK will not be able to recognize those views and continue to function
as if those views were removed.

Both the CMB and the LEGACY overlay allow you to change the images used on the zoom and flash buttons. To do that, first copy the assets folder
MWBScannerImages.xcassets from the Resources dir into your project. In XCode you can look at the images contained in this assets folder, and
replace them with your own while keeping the image names unchanged.

Both the CMB and the LEGACY overlay allow you to change the color and width of the rectangle that is displayed when a barcode is detected. Here's
an example on how to do that:

Swift
Objective-C

MWOverlay.setLocationLineUIColor(UIColor.yellow)

MWOverlay.setLocationLineWidth(5)

[MWOverlay setLocationLineUIColor:UIColor.yellowColor];

[MWOverlay setLocationLineWidth:5];

Target Decoding

In scenario when you have a lot of barcodes on small surface, very close one to another there is new feature available from cmbSDK v.2.2.0 called
Target (centered) decoding. There is 3 DMCC's that are used to configure this mode. Use them after valid connection to reader device:

(GET|SET) DECODER.TARGET-DECODING [ON|OFF]
(GET|SET) DECODER.CENTERING-WINDOW [0-100] [0-100] [1-100] [1-100]
(GET|SET) DECODER.DISPLAY-TARGET [ON|OFF]

GET/SET DECODER.TARGET-DECODING command is used to enable or disable target decoding. By default OFF.

15 / 34

Example

Swift
Objective-C

self.readerDevice.dataManSystem().sendCommand("SET DECODER.TARGET-DECODING ON")

[self.readerDevice.dataManSystem sendCommand:@"SET DECODER.TARGET-DECODING ON"];

DECODER.CENTERING-WINDOW command is used to set (or get) the size of the centering window. The numbers are in percent of the image.
centerX and centerY defines where the middle of the centering window should be in the image. sizeX and sizeY define the size of the centering window.

If a barcode touches the centering window it is accepted. The barcode doesn’t have to be contained in the window, but just touch it. By default [50 50
10 10].

Example

Swift
Objective-C

self.readerDevice.dataManSystem().sendCommand("SET DECODER.CENTERING-WINDOW 50 50 5 5")

[self.readerDevice.dataManSystem sendCommand:@"SET DECODER.CENTERING-WINDOW 50 50 5 5"];

DECODER.DISPLAY-TARGET command is used to set (or get) if the centering window should be shown on the SVG result. By default OFF

Example

Swift
Objective-C

self.readerDevice.dataManSystem().sendCommand("SET DECODER.DISPLAY-TARGET ON")

[self.readerDevice.dataManSystem sendCommand:@"SET DECODER.DISPLAY-TARGET ON"];

Here is example of scanning preview when target decoding is enabled:

16 / 34

Centering window (rectangle) color and width can be changed with:

Swift

17 / 34

Objective-C

MWOverlay.setTargetRectLineUIColor(UIColor.red)

MWOverlay.setTargetRectLineWidth(2)

[MWOverlay setTargetRectLineUIColor:[UIColor redColor]];

[MWOverlay setTargetRectLineWidth:2];

Multicode

If you want to scan more barcodes at once and in one scanning session you can use Multi code mode. This mode is available from cbmSDK v.2.2.x.
To configure this mode 4 DMCC's are used. Use them after valid connection to reader device:

(GET|SET) MULTICODE.NUM-CODES [1-255]
(GET|SET) MULTICODE.PARTIAL-RESULTS [ON|OFF]
(GET|SET) DECODER.REREAD-NOT-LAST-N [0-100]
(GET|SET) MULTICODE.MAX-NUM-CODES [1-5] [1-255]

GET/SET MULTICODE.NUM-CODES command is used to set number of codes reader must find for a successful read result. By default 1.

Example

Swift
Objective-C

self.readerDevice.dataManSystem().sendCommand("SET MULTICODE.NUM-CODES 3")

[self.readerDevice.dataManSystem sendCommand:@"SET MULTICODE.NUM-CODES 3"];

GET/SET MULTICODE.PARTIAL-RESULTS command is used to set how the reader interprets the number of codes to find. ON = reader will return a
successful read if 1 or more codes are found. OFF = reader will return a successful read only if number of codes found equals MULTICODE.NUM-
CODES value. By default OFF.

Example

Swift
Objective-C

self.readerDevice.dataManSystem().sendCommand("SET MULTICODE.PARTIAL-RESULTS ON")

[self.readerDevice.dataManSystem sendCommand:@"SET MULTICODE.PARTIAL-RESULTS ON"];

GET/SET DECODER.REREAD-NOT-LAST-N command is used to define N, do not read code if this code was read within the last N reads. By default
0, no restriction.

Example

18 / 34

Swift
Objective-C

self.readerDevice.dataManSystem().sendCommand("SET DECODER.REREAD-NOT-LAST-N 1")

[self.readerDevice.dataManSystem sendCommand:@"SET DECODER.REREAD-NOT-LAST-N 1"];

GET/SET MULTICODE.MAX-NUM-CODES command is used to set expected maximum number of codes to find for each symbology grouping 1 - 5:

1. DataMatrix
2. QR Code/MaxiCode/AztecCode
3. Linear/ Postal/ Stacked
4. VeriCode
5. DotCode

No expected value for any single symbology can exceed parameter MULTICODE.NUM-CODES, the total number of codes to find. 1st param is
symbology group, secont one is max num of codes. By default 1 for all.

Example

Swift
Objective-C

self.readerDevice.dataManSystem().sendCommand("SET MULTICODE.MAX-NUM-CODES 1 3")

[self.readerDevice.dataManSystem sendCommand:@"SET MULTICODE.MAX-NUM-CODES 1 3"];

When multi code mode is enabled, in the didReceiveReadResultFromReader:(CMBReaderDevice *)reader results:(CMBReadResults
*)readResults delegate method from the CMBReaderDeviceDelegate delegate, you can get list of all results from
the readResults.subReadResults property of the CMBReadResults object. If multi code mode is disabled this property will be nil.

Parsers

Starting form v.2.2.x we add parsers plugin in cmbSDK. Parsers help us to extract decoded results into a structured format (JSON, Key-Value) for
search, sort, and validation. There are six types of parsers:

1. CMBResultParserAAMVA
2. CMBResultParserGS1
3. CMBResultParserHIBC
4. CMBResultParserISBT128
5. CMBResultParserIUID
6. CMBResultParserSCM

Also there is option to use CMBResultParserAuto parser type in our SDK and we will try to find which one should be used.

Use the parser property from the CMBReaderDevice object to set parser type that you want to use, or to get selected type. Set parser type after valid
connection to reader device. CMBResultParserNone by default.

Example

Swift
Objective-C

self.readerDevice.parser = CMBResultParserAAMVA

19 / 34

self.readerDevice.parser = CMBResultParserAAMVA;

After you enable the needed parser type, in the didReceiveReadResultFromReader:(CMBReaderDevice *)reader results:(CMBReadResults
*)readResults delegate method from the CMBReaderDeviceDelegate delegate you can get the structured format from the received result:

Swift
Objective-C

let results:[CMBReadResult] = readResults?.readResults as? [CMBReadResult] ?? []

//Returns parsed text in json format from the result

let parsedJSON = results.first?.parsedJSON

//Returns parsed text from the result

let parsedText = results.first?.parsedText

NSArray<CMBReadResult*>* results = readResults.readResults;

//Returns parsed text in json format from the result

NSString* parsedJSON = [[results firstObject] parsedJSON];

//Returns parsed text from the result

NSString* parsedText = [[results firstObject] parsedText];

ROI (region of interest)

If you want to edit/resize region of interest for your scanning process while you are using phone camera as reader device you can use (GET|SET)
DECODER.ROI-PERCENT [X W Y H] DMC command (available from cmbSDK v2.2.x), where X and Y represent the starting point of the RoI in each
axis, and W H represent the RoI width and height starting from the starting point, with values in percentages. The range of 0-100 is checked, as well as
minimum values of 5 for width and height, and the constraints implied between args, such as the total sum for a given axis to be no more than 100. Use
this DMCC after valid connection to reader device.

Example

Swift
Objective-C

self.readerDevice.dataManSystem().sendCommand("SET DECODER.ROI-PERCENT 10 80 10 80")

[self.readerDevice.dataManSystem sendCommand:@"SET DECODER.ROI-PERCENT 10 80 10 80"];

Advanced Configuration

Every Cognex scanning device implements DataMan Control Commands (DMCC), a method for configuring and controlling the device. Virtually every
feature of the device can be controlled using this text based language. The API provides a method for sending DMCC commands to the device.
Commands exist both for setting and querying configuration properties.

Appendix A includes the complete DMCC reference for use with the camera reader. DMCC commands for other supported devices (e.g. the MX-1000)
are included with the documentation of that particular device.

Appendix B provides the default values for the camera reader’s configuration settings as related to the corresponding DMCC setting.

The following examples show different DMCC commands being sent to the device for more advanced configuration. Change the scan direction to
omnidirectional:

Swift
Objective-C

20 / 34

self.readerDevice.dataManSystem()?.sendCommand("SET DECODER.1D-SYMBOLORIENTATION 0", withCallback: { (response:CDMResponse?) in

 if response?.status == DMCC_STATUS_NO_ERROR {

 // Command was executed successfully

 } else {

 // Command failed, handle errors here

 }

})

[readerDevice.dataManSystem sendCommand:@"SET DECODER.1D-SYMBOLORIENTATION 0" withCallback:^(CDMResponse *response){
 if (response.status == DMCC_STATUS_NO_ERROR) {

 // Command was executed successfully

 } else {

 // Command failed, handle errors here

 }

}];

Change the scanning timeout of the live-stream preview to 10 seconds:

Swift
Objective-C

self.readerDevice.dataManSystem()?.sendCommand("SET DECODER.MAX-SCAN-TIMEOUT 10", withCallback: { (response:CDMResponse?) in

 if response?.status == DMCC_STATUS_NO_ERROR {

 // Command was executed successfully

 } else {

 // Command failed, handle errors here

 }

})

[readerDevice.dataManSystem sendCommand:@"SET DECODER.MAX-SCAN-TIMEOUT 10" withCallback:^(CDMResponse *response){

 if (response.status == DMCC_STATUS_NO_ERROR) {

 // Command was executed successfully

 } else {

 // Command failed, handle errors here

 }

}];

Get the type of the connected device:

Swift
Objective-C

self.readerDevice.dataManSystem()?.sendCommand("GET DEVICE.TYPE", withCallback: { (response:CDMResponse?) in

 if response?.status == DMCC_STATUS_NO_ERROR {

 // Command was executed successfully

 let deviceType:String = response?.payload

 } else {

 // Command failed, handle errors here

 }

})

[readerDevice.dataManSystem sendCommand:@"GET DEVICE.TYPE" withCallback:^(CDMResponse *response){

 if (response.status == DMCC_STATUS_NO_ERROR) {

 // Command was executed successfully

 NSString *deviceType = response.payload;

 } else {

 // Command failed, handle errors here

 }

}];

21 / 34

Resetting the Configuration

The cmbSDK includes a method for resetting the device to its default settings. In the case of an MX mobile terminal, this is the configuration saved by
default (not the factory defaults), while in the case of the built-in camera, these are the defaults identified in Appendix B, where no symbologies will be
enabled. This method is the following:

Swift
Objective-C

self.readerDevice.resetConfig { (error:Error?) in

 if error != nil {

 // Failed to reset configuration, Possible causes are: reader disconnected, out of battery or cable unplugged

 }

}

[readerDevice resetConfigWithCompletion:^(NSError *error) {

 if (error) {

 // Failed to reset configuration, Possible causes are: reader disconnected, out of battery or cable unplugged

 }

}];

Scanning Barcodes

With a properly configured reader, you are now ready to scan barcodes. This is simply accomplished by calling the startScanning() method from your
Reader Device object. What happens next is based on the type of Reader Device and how it has been configured, but in general:

If using an MXreader, the user can now press a trigger button on the device to turn the scanner on and read a barcode.
If using the camera reader, the cmbSDK starts the camera, displays the configured live-stream preview,and begins analyzing the frames from the
video stream, looking for a configured barcode symbology.

Scanning stops under one of the following conditions:

The reader found and decodeda barcode.
The user released the trigger or pressed the stop button on the live-stream preview screen.
The camera reader timed out with out finding a barcode.
The application program itself calls the stopScanning() method.

When a barcode is decoded successfully (the first case), you will receive a CMBReadResults array in your Reader Device's delegate using the following
CMBReaderDeviceDelegate method:

Swift
Objective-C

func didReceiveReadResult(fromReader reader: CMBReaderDevice, results readResults: CMBReadResults!)

- (void)didReceiveReadResultFromReader:(CMBReaderDevice *)reader results:(CMBReadResults *)readResults;

 The following is an example to simply display a ReadResult after scanning a barcode:

Swift
Objective-C

22 / 34

func didReceiveReadResult(fromReader reader: CMBReaderDevice, results readResults: CMBReadResults!) {

 if readResults.readResults.count > 0 {

 let readResult:CMBReadResult = readResults.readResults?.first as! CMBReadResult

 if readResult.image != nil {

 self.ivPreview.image = readResult.image

 }

 if readResult.readString != nil {

 self.lblCode.text = readResult.readString

 }

 }

}

- (void)didReceiveReadResultFromReader:(CMBReaderDevice *)reader results:(CMBReadResults *)readResults {

 if (readResults.readResults.count > 0) {

 CMBReadResult *readResult = readResults.readResults.firstObject;

 if (readResult.image) {

 self.ivPreview.image = readResult.image;

 }

 if (readResult.readString) {

 self.lblCode.text = readResult.readString;

 }

 }

}

In the example above, ivPreview is an UIImageView used to display an image of the barcode that was scanned, and lblCode is a UILabel used to show
the result from the barcode. You can also use the BOOL from readResult.goodRead to check whether the scan was successful or not.

Working with Results

When a barcode is successfully read, a CMBReadResult object is created and returned by the didReceiveReadResultFromReader:results: method. In
case of having multiple barcodes successfully read on a single image/frame, multiple CMBReadResult objects are returned. This is why the
CMBReadResults class has an array of CMBReadResult objects containing all results.

The CMBReadResult class has properties describing the result of a barcode read:

goodRead (BOOL): tells whether the read was successful or not
readString (NSString): the decoded barcode as a string
image (UIImage): the image/frame that the decoder has processed
imageGraphics (NSData): the boundary path of the barcodeas SVG data
XML (NSData): the raw XML that the decoder returned
symbology (CMBSymbology): the symbology type of the barcode.This enum is defined in CMBReaderDevice.h.

When a scanning ends with no successful read, a CMBReadResult is returned with the goodRead property set to false. This usually happens when
scanning is canceled or timed out.

To enable the image and imageGraphics properties being filled in the CMBReadResult object, you have to set the corresponding imageResultEnabled
and/or SVGResultEnabled properties of the CMBReaderDevice object.

To see an example on how the image and SVG graphics are used and displayed in parallel, refer to the sample applications provided in the SDK
package.

To access the raw bytes from the scanned barcode, you can use the XML property. The bytes are stored as a Base64 String under the "full_string" tag.
Here's an example how you can use the iOS XML parser to extract the raw bytes from the XML property.

Parsing the XML and extracting the Base64 String is done using the XMLParserDelegate delegate. Add this delegate and the following methods from it
in your ViewController:

Swift
Objective-C

// XMLParserDelegate

var currentElement = ""

var base64String = ""

func parser(_ parser: XMLParser, didStartElement elementName: String, namespaceURI: String?, qualifiedName qName: String?, attribute
 currentElement = elementName

}

func parser(_ parser: XMLParser, foundCharacters string: String) {

 if currentElement == "full_string" {

23 / 34

 base64String = string

 }

}

#pragma NSXMLParserDelegate

NSString *currentElement;

NSString *base64String;

- (void)parser:(NSXMLParser *)parser didStartElement:(NSString *)elementName namespaceURI:(NSString *)namespaceURI qualifiedName:(NS
 currentElement = elementName;

}

- (void)parser:(NSXMLParser *)parser foundCharacters:(NSString *)string {

 if ([currentElement isEqualToString:@"full_string"]) {

 base64String = string;

 }

}

After you have set the XMLParserDelegate to extract the base64 string from the XML result, you need to create a XMLParser object and parse the
result.xml using this delegate. This can be done when receiving the scan result in the CMBReaderDeviceDelegate, or when accessing
a CMBReadResult object. Here's how you can get the raw bytes using the delegate that you created earlier:

Swift
Objective-C

let xmlParser:XMLParser = XMLParser.init(data: result.xml)

xmlParser.delegate = self

if xmlParser.parse() {

 // Access the raw bytes via this variable

 let bytes:Data? = Data.init(base64Encoded: base64String)

}

NSXMLParser *xmlParser = [NSXMLParser.alloc initWithData:result.XML];

xmlParser.delegate = self;

if ([xmlParser parse]) {

 // Access the raw bytes via this variable

 NSData *bytes = [NSData.alloc initWithBase64EncodedString:base64String options:0];

}

Image Results

By default, the image and SVG results are disabled, which means that when scanning, the CMBReadResults will not contain any data in the
corresponding properties.

Not all supported devices provide SVG graphics.

To enable image results, set the imageResultEnabled property from the CMBReaderDevice class by using the following method:

Swift
Objective-C

self.readerDevice.imageResultEnabled = true

[readerDevice setImageResultEnabled:YES];

To enable SVG results, set the imageResultEnabled property from the CMBReaderDevice class by using the following method:

24 / 34

Swift
Objective-C

self.readerDevice.svgResultEnabled = true

[readerDevice setSVGResultEnabled:YES];

Handling Disconnects

1. Disconnects:

There may be cases when a device disconnects due to low battery condition or manual cable disconnection. These cases can be detected by the
connectionStateDidChangeOfReader callback of the CMBReaderDeviceDelegate.

Note: The availabilityDidChangeOfReader method is also called when the device becomes physically unavailable. It means that the (re)connection
is not possible. Always check the availability property of the CMBReaderDevice object before trying to call the connectWithCompletion method.

2. Re-Connection:

After you return to your application from inactive state, the reader device remains initialized, but not connected. This means there is no need for
reinitializing the SDK, but you will need to re-connect.

Some iOS versions will send a "Availability" notification when resuming the application that the External Accessory is available. You can use this in the
CMBReaderDeviceDelegate's method: (void)availabilityDidChangeOfReader:(CMBReaderDevice *)reader. In it, when the reader becomes available,
you can connect to it.

For example:

Swift
Objective-C

func availabilityDidChange(ofReader reader: CMBReaderDevice) {

 if (reader.availability == CMBReaderAvailibilityAvailable) {

 readerDevice.connect(completion: { error in

 if error != nil {

 // handle connection error

 }

 })

 }

}

- (void)availabilityDidChangeOfReader:(CMBReaderDevice *)reader {

 if (readerDevice.availability == CMBReaderAvailibilityAvailable) {

 [readerDevice connectWithCompletion:^(NSError *error) {

 if (error) {

 // handle connection error

 }

 }];

 }

}

Some iOS versions do not report availability change on resume, so you will have to handle this manually. For this, you will have to add an observer for
"UIApplicationDidBecomeActiveNotification" and do some checks before connecting, so you don't connect while the reader is already in "connecting" or

25 / 34

"connected" state. For example:

Swift
Objective-C

override func viewDidLoad() {

 super.viewDidLoad()

 // Reconnect when app resumes

 NotificationCenter.default.addObserver(self, selector: #selector(self.appBecameActive), name:NSNotification.Name.UIApplicationDi
}

// handle app resume

func appBecameActive() {

 if readerDevice != nil

 && readerDevice.availability == CMBReaderAvailibilityAvailable

 && readerDevice.connectionState != CMBConnectionStateConnecting && readerDevice.connectionState != CMBConnectionStateConnect
 readerDevice.connect(completion: { error in

 if error != nil {

 // handle connection error

 }

 })

 }

}

- (void)viewDidLoad {

 // Reconnect when app resumes

 [[NSNotificationCenter defaultCenter] addObserver:self

 selector:@selector(appBecameActive)

 name:UIApplicationDidBecomeActiveNotification object:nil];

}

// handle app resume

-(void) appBecameActive {

 if (readerDevice != nil

 && readerDevice.availability == CMBReaderAvailibilityAvailable

 && readerDevice.connectionState != CMBConnectionStateConnecting && readerDevice.connectionState != CMBConnectionStateConnect
 [readerDevice connectWithCompletion:^(NSError *error) {

 if (error) {

 // handle connection error

 }

 }];

 }

}

Appendix A - DMCC for the Camera Reader

Appendix A - DMCC for the Camera Reader

The following table lists the various DMCC commands supported by the cmbSDK when using the built-in camera for barcode scanning.

Note: Many of these commands are also supported by the MX mobile terminals. Commands that are unique to the camera reader or MX-100 are
indicated as such with an X in the last column.

GET/SET COMMAND PARAMETER(S) DESCRIPTION CAMERAREADER

26 / 34

GET/SET COMMAND PARAMETER(S) DESCRIPTION CAMERAREADER

GET/SET BATTERY.CHARGE Returns the current battery level of the
device as a percentage.

 BEEP Plays the audible beep (tone).

GET/SET BEEP.GOOD [0-3] [0-2]

Sets the number of beeps (0-3) and the
beep tone/pitch (0- 2, for low, medium,
high). For the built-in camera, only a
single beep with no pitch control is

supported. Thus, 0 1 turns the beep off,
1 1 turns the beep on.

GET/SET CAMERA.ZOOM 0-2

The possible values for the SET
command are: 0 - normal (un-zoomed),
1 - zoom at level 1, 2 - zoom at level 2.

This zoom level is used during
scanning. When scanning ends it reset

to 0.

X

GET/SET CAMERA.ZOOM-
PERCENT

[100-MAX] [100-
MAX]

Sets/Returns level 1 zoom (default
200% on iOS, 150% on Android),

and level 2 zoom (default 400% on
iOS, 300% on Android).

Note: The camera needs to be started
at least once from sdk to have a proper

value for max capable zoom (MAX)

X

GET/SET CODABAR.CODESIZE ON min max OFF
min max

Accepts any length Codabar.

Sets min/max length of accepted

Codabar.
X X

GET/SET C11.CHKCHAR ON | OFF Turns Code 11 check digit on/off. X

GET/SET C11.CHKCHAR-OPTION 1 2 Requires single checksum. Requires
double checksum. X X

GET/SET C11.CODESIZE ON min max OFF
min max

Accepts any length Code 11.

Sets min/max length of accepted Code

11.
X X

GET/SET C25.CODESIZE ON min max OFF
min max

Accepts any length Code 25.

Sets min/max length of accepted Code

25.
X X

GET/SET C39.ASCII ON | OFF Turns Code 39 extended ASCII on/off.

GET/SET C39.CODESIZE ON min max OFF
min max

Accepts any length Code 39.

Sets min/max length of accepted Code

39.

GET/SET C39.CHKCHAR ON | OFF Turns Code 39 check digit on/off

GET/SET C93.ASCII ON | OFF Turns Code 93 extended ASCII on/off X

GET/SET C93.CODESIZE ON min max OFF
min max

Accepts any length Code 93.

Sets min/max length of accepted Code

93.

27 / 34

GET/SET COMMAND PARAMETER(S) DESCRIPTION CAMERAREADER

 CONFIG.DEFAULT

Resets most of the camera API settings
to default, except those noted as not

resetting (see Appendix B). To reset all
settings, use DEVICE.DEFAULT.

GET/SET DATA.RESULT-TYPE 0 1 2 4 8

Specifies results to be returned (sum of
multiple values): None

Text string result (default)

XML results

XML stats

Scan image (see IMAGE.* commands)

GET/SET DATABAR.EXPANDED ON | OFF Turns the DataBar Expanded
symbology on/off.

GET/SET DATABAR.LIMITED ON | OFF Turns the DataBar Limited symbology
on/off.

GET/SET DATABAR.RSS14 ON | OFF Turns the DataBar RSS14 symbology
on/off. X

GET/SET DATABAR.RSS14STACK ON | OFF Turns the DataBar RSS14 Stacked
symbology on/off. X

GET/SET DECODER.1D-
SYMBOLORIENTATION 0 1 2 3

Use omnidirectional scan orientation.

Use horizontal and vertical scan

orientation. Use vertical scan
orientation.

Use horizontal scan orientation.

GET/SET DECODER.EFFORT 1-5
Sets the effort level for image

analysis/decoding. The default is 2. Do
not use 4-5 for online scanning.

X

GET/SET DECODER.MAX-SCAN-
TIMEOUT 1-120

Sets the timeout for the live-stream
preview. When the timeout is reached,

decoding is paused; the live-stream
preview will remain on-screen.

X

GET DECODER.MAX-
THREADS Returns the max number of CPU

threads supported by the device. X

GET/SET DECODER.THREADS-
USED [0-MAX]

Specify the max number of CPU
threads that the scanner can use during

the scanning process.
X

 DEVICE.DEFAULT Resets the camera API settings to
default (see Appendix B).

GET DEVICE.FIRMWARE-
VER Gets the device firmware version.

GET DEVICE.ID

Returns device ID assigned by Cognex
to the scanning device.

For a built-in camera, SDK returns 53.
For MX-100 Barcode Scanner, SDK

returns 56.

GET/SET DEVICE.NAME

Returns the name assigned to the
device. By default, this is “MX-“ plus the

last 6 digits of DEVICE.SERIAL-
NUMBER.

28 / 34

GET/SET COMMAND PARAMETER(S) DESCRIPTION CAMERAREADER

GET DEVICE.SERIAL-
NUMBER

Returns the serial number of the
device. For a built-in camera, the SDK

assigns a pseudo-random number.

GET DEVICE.TYPE

Returns the device name assigned by
Cognex to the scanning device.

For a built-in camera, SDK returns “MX-
Mobile”.

If MX-100 is available, SDK returns
"MX-100".

GET/SET FOCUS.FOCUSTIME 0-10

Sets the camera’s auto-focus period
(how often the camera should attempt

to refocus).
The default is 3, but it is 1 for MX-100.

GET/SET I2O5.CHKCHAR ON | OFF Turns Interleaved 2 of 5 check digit
on/off.

GET/SET I205.CODESIZE ON min max OFF
min max

Accepts any length Interleaved 2 of 5.

Sets min/max length of accepted

Interleaved 2 of 5.
X X

GET/SET IMAGE.FORMAT 0 1 2

Scanner returns image result in bitmap
format. Scanner returns image result in
JPEG format. Scanner returns image

result in PNG format.

GET/SET IMAGE.QUALITY 10, 15, 20, ...90 Specifies JPEG image quality.

GET/SET IMAGE.SIZE 0 1 2 3

Scanner returns full size image.
Scanner returns 1⁄4 size image.

Scanner returns 1/16 size image.
Scanner returns 1/62 size image.

GET/SET LIGHT.AIMER 0-1 Disables/enables the aimer (when the
scanner starts).

SET LIGHT.AIMER-CONFIG [32-100] [0-15]
[32-100]

Sets MX-100's configuration;
parameters are aimer intensity, aimer

modulation, illumination intensity
X

GET LIGHT.AIMER-CONFIG 0 | 1

Get's all of the MX-100 configuration
parameters (see above) at one time.

Using option 0 reads the settings from
the cache; using option 1 always reads

from the device.

X

GET/SET LIGHT.AIMER-
INTENSITY 32-100 Sets/gets the aimer LED's intensity (as

a percentage) X

GET/SET LIGHT.AIMER-
MODULATION 0-15 Sets/gets the aimer LED's modulation

(blink rate); parameter is milliseconds X

GET/SET LIGHT.AIMER-TIMEOUT 0-600
Timeout in seconds for an aimer.
This value is always overridden by

DECODER.MAX-SCAN- TIMEOUT.

GET/SET LIGHT.INTERNAL-
ENABLE ON | OFF Enables/disables illumination (when the

scanner starts).

29 / 34

GET/SET COMMAND PARAMETER(S) DESCRIPTION CAMERAREADER

GET/SET MSI.CHKCHAR ON | OFF Turns MSI Plessey check digit on/off.

GET/SET MSI.CHKCHAR-OPTION 0 1 2 3 4 5

Use mod 10 checksum

Use mod 10 mod 10 checksum

Use mod 11 checksum (IBM algorithm)

Use mod 11 mod 10 checksum (IBM

algorithm) Use mod 11 checksum
(NCR algorithm)

Use mod 11 mod 10 checksum (NCR
algorithm)

X X

GET/SET MSI.CODESIZE ON min max OFF
min max

Accepts any length MSI Plessey.

Sets min/max length of accepted MSI

Plessey.
X X

GET/SET SYMBOL.AZTECCODE ON | OFF Turns the Aztec Code symbology
on/off.

GET/SET SYMBOL.CODABAR ON | OFF Turns the Codabar symbology on/off.

GET/SET SYMBOL.C11 ON | OFF Turns the Code 11 symbology on/off. X

GET/SET SYMBOL.C128 ON | OFF Turns the Code 128 symbology on/off.

GET/SET SYMBOL.C25 ON | OFF Turns the Code 25 symbology on/off
(standard).

GET/SET SYMBOL.C39 ON | OFF Turns the Code 39 symbology on/off.

GET/SET SYMBOL.C93 ON | OFF Turns the Code 93 symbology on/off.

GET/SET SYMBOL.COOP ON | OFF Turns the COOP symbology (Code 25
variant) on/off. X

GET/SET SYMBOL.DATAMATRIX ON | OFF Turns the Data Matrix symbology
on/off.

GET/SET SYMBOL.DATABAR ON | OFF Turns the DataBar Expanded and
Limited symbologies on/off.

GET/SET SYMBOL.DOTCODE ON | OFF Turns the DotCode symbology on/off.

GET/SET SYMBOL.IATA ON | OFF Turns the IATA symbology (Code 25
variant) on/off. X

GET/SET SYMBOL.INVERTED ON | OFF Turns the Inverted symbology (Code 25
variant) on/off. X

GET/SET SYMBOL.ITF14 ON | OFF Turns the ITF-14 symbology (Code 25
variant) on/off. X

30 / 34

GET/SET COMMAND PARAMETER(S) DESCRIPTION CAMERAREADER

GET/SET SYMBOL.UPC-EAN ON | OFF Turns the UPC-A, UPC-E, EAN-8, and
EAN-13 symbologies on/off.

GET/SET SYMBOL.MATRIX ON | OFF Turns the Matrix symbology (Code 25
variant) on/off. X

GET/SET SYMBOL.MAXICODE ON | OFF Turns the MaxiCode symbology on/off. X

GET/SET SYMBOL.MSI ON | OFF Turns the MSI Plessey symbology
on/off.

GET/SET SYMBOL.PDF417 ON | OFF Turns the PDF417 symbology on/off.

GET/SET SYMBOL.PLANET ON | OFF Turns the PLANET symbology on/off.

GET/SET SYMBOL.POSTNET ON | OFF Turns the POSTNET symbology on/off.

GET/SET SYMBOL.4STATE-IMB ON | OFF Turns the Intelligent Mail Barcode
symbology on/off.

GET/SET SYMBOL.4STATE-RMC ON | OFF Turns the Royal Mail Code symbology
on/off.

GET/SET SYMBOL.QR ON | OFF Turns the QR and MicroQR
symbologies on/off.

GET/SET TRIGGER.TYPE 0 1 2 3 4 5
Not supported Not supported Manual
(default) Not supported Not supported

Continuous

GET/SET UPC-EAN.EAN13 ON | OFF Turns the EAN-13 symbology on/off. X

GET/SET UPC-EAN.EAN8 ON | OFF Turns the EAN-8 symbology on/off. X

GET/SET UPC-EAN.UPC-A ON | OFF Turns the UPC-A symbology on/off. X

GET/SET UPC-EAN.UPC-E ON | OFF Turns the UPC-E symbology on/off. X

GET/SET UPC-EAN.UPCE1 ON | OFF Turns the UPC-E1 symbology on/off.

GET/SET UPCE-
AN.SUPPLEMENT 0 1-4 Turns off UPC supplemental codes.

Turns on UPC supplemental codes.

GET/SET VIBRATION.GOOD ON | OFF Sets/gets whether to vibrate when a
code is read (default is ON)

31 / 34

Appendix B - Camera Reader Defaults

Appendix B - Camera Reader Defaults

The following table lists the defaults the SDK uses on startup for the camera reader.

Note: At the low-level, the cmbSDK supported devices can perform two types of configuration resets: a device reset and a config reset. A device
reset restores all configuration properties to their saved defaults, while a config reset restores mostly the scanning settings, leaving communication
settings alone. In the table below, those items that are only reset by a device reset are indicated.

Note: The Reader Device method resetConfig() performs a config reset. To perform a device reset, the DMCC command DEVICE.RESET would
need to be issued.

SETTING DEFAULT VALUE DEVICE RESET
ONLY?

BEEP.GOOD 1 1 (Turn beep on)

C11.CHKCHAR OFF

C11.CHKCHAR-OPTION 1

C39.ASCII OFF

C39.CHKCHAR OFF

C93.ASCII OFF

COM.DMCC-HEADER 1 (Include Result ID) Y

COM.DMCC-RESPONSE 0 (Extended) Y

DATA.RESULT-TYPE 1 Y

DECODER.1D-SYMBOLORIENTATION 1

DECODER.EFFORT 2

DECODER.MAX-SCAN-TIMEOUT 60

DEVICE.NAME “MX-“ + the last six digits of DEVICE.SERIAL-
NUMBER

32 / 34

SETTING DEFAULT VALUE DEVICE RESET
ONLY?

Symbologies (SYMBOL.*) OFF (all symbologies are disabled)

Symbology sub-types (groups): DATABAR.EXPANDED

DATABAR.LIMITED

DATABAR.RSS14 DATABAR.RSS14STACK UPC-
EAN.EAN13

UPC-EAN.EAN8 UPC-EAN.UPC-A UPC-EAN.UPC-E
UPC-EAN.UPCE1

ON OFF OFF OFF ON ON ON ON OFF

FOCUS.FOCUSTIME 3

I2O5.CHKCHAR OFF

IMAGE.FORMAT 1 (JPEG)

IMAGE.QUALITY 50

IMAGE.SIZE 1 (1/4 size)

LIGHT.AIMER
Default based on cameraMode: 0: NoAimer

and FrontCamera

1: PassiveAimer and ActiveAimer

Y

LIGHT.AIMER-TIMEOUT 60

LIGHT.INTERNAL-ENABLE OFF

Appendix B - Camera Reader Defaults

Setting Default Value Device Reset Only?

Minimum/maximum code lengths ON 4 40

MSI.CHKCHAR OFF

MSI.CHKCHAR-OPTION 0

TRIGGER.TYPE 2 (Manual)

UPC-EAN.SUPPLEMENT 0

33 / 34

Precautions

Precautions

Observe these precautions when installing the Cognex product, to reduce the risk of injury or equipment damage:

To reduce the risk of damage or malfunction due to over-voltage, line noise, electrostatic discharge (ESD), power surges, or other irregularities in
the power supply, route all cables and wires away from high-voltage power sources.
Changes or modifications not expressly approved by the party responsible for regulatory compliance could void the user’s authority to operate the
equipment.
Cable shielding can be degraded or cables can be damaged or wear out more quickly if a service loop or bend radius is tighter than 10X the cable
diameter. The bend radius must begin at least six inches from the connector.
This device should be used in accordance with the instructions in this manual.
All specifications are for reference purpose only and may be changed without notice.

Migration from mwSDK to cmbSDK

Difference between mwSDK and cmbSDK

The Manatee Works Barcode Scanner SDK has been fully integrated into the Cognex Mobile Barcode SDK (cmbSDK). Therefore, we are shifting our
focus to the cmbSDK.

The good news is that the cmbSDK is backward compatible with the MW SDK. The cmbSDK simply adds a higher-level API to the scanning methods
that utilize the camera of a smartphone or tablet. Or, you can continue to use the lower-level methods you have become familiar with in the Manatee
Works SDK. Your account, login, license(s), and key(s) remain the same. If you do decide to program to the higher-level API, you will have the added
benefit of your app(s) supporting the Cognex MX Series mobile barcode readers, and MX Series mobile terminals, with a single code base.

Remove mwSDK

To avoid collision between mwSDK and cbmSDK we need to completely remove the MW library.

Please remove the following files from the mwSDK:

libBarcodeScanner.a
MWResult.h/m
MWOverlay.h/m
MWParser.h/m

Optionally, if you don't use the helper classes MWImageGetter.h/m and MWImageScanner.h/m you can remove them as well.

Add cmbSDK

Next step is to add DataManFW framework and use in your project. Please navigate to this url to check step by step how to integrate cmbSDK inside
your project.

After that please remove all API's and methods that you are using from mwSDK, and follow our guide from here to see how to implement cmbSDK in
your project.

Here are some of the main differences in code between mwSDK and cmbSDK:

1. Initialize, create and connect reader device

- Using mwSDK we don't have that CMBReaderDevice object and we use API methods from the BarcodeScanner class to initialize decoder
before starting the scanner process: set active codes, set scanning rect, set decoder level, register sdk, etc. When we use cmbSDK all of
these things are done in code behind with default values when we create a CMBReaderDevice object. Here some of the settings can be set in the
constructor as input parameter and others can be set/changed after we create and connect to reader device. Using cmbSDK not only creating
reader device in enough to start scanning process, we also need to connect to reader device and set necessary delegate methods that will handle
response from connection state changed, availability, result received, etc.

2. Start scanning process

- With mwSDK after we initialize decoder we are ready to start the scanning. We do that by creating an AVCaptureDevice object with

https://cmbdn.cognex.com/v2.2.x/knowledge/-cognex-mobile-barcode-sdk-for-ios/using-cmbsdk/using-cmbsdk-in-xcode
https://cmbdn.cognex.com/v2.2.x/knowledge/-cognex-mobile-barcode-sdk-for-ios/using-cmbsdk/setting-up-an-application-to-use-cmbsdk-for-ios

34 / 34

AVCaptureSession and use that to capture frames from the device's camera, which we then decode with the mwSDK.

Using cmbSDK there is only one method to start the scanning process and comes from CMBReaderDevice object (startScanning). We can't start
scanning process if we don't have valid connection to reader device. Here we can scan in full screen mode if we create reader device without
setting a previewContainer, or if we want to scan in a partial view, we need to create a UIVIew container for the preview that container in our layout
and use it as an input parameter. Result from scanning process will be received in didReceiveReadResultFromReader:(CMBReaderDevice *)reader
results:(CMBReadResults *)readResults function from the CMBReaderDeviceDelegate delegate.

3. Result received

- If we have a successful read or we stop the scanning process and have no read, result object will be received in the
didReceiveReadResultFromReader:(CMBReaderDevice *)reader results:(CMBReadResults *)readResults function. In cmbSDK the result object is
more extended than in mwSDK. From that object we can read our barcode result, symbology, image from the last frame, SVG result, etc.

