
t it le:	Cognex	Mobile	Barcode	SDK	for	Android	(v2.2.x)	;	ver:	2.7.x 1	/	47

Cognex	Mobile	Barcode	SDK	for	Android
(v2.2.x)

Overview

Cognex	Mobile	Barcode	SDK	(cmbSDK)	is	a	tool	for	developing	mobile	barcode
scanning	applications.	CmbSDK	is	based	on	Cognex's	DataMan	technology	and	the
Manatee	Works	Barcode	Scanning	SDK	and	it	allows	you	to	create	barcode	scanning
applications	for	mobile	devices.	Mobile	devices	used	for	barcode	scanning	range
from	smartphones	to	the	MX	Series	industrial	barcode	readers.	CmbSDK	abstracts	the
device	through	a	ReaderDevice	connection	layer.	Once	the	application	establishes	its
connection	with	the	reader,	a	single,	unified	API	is	used	as	interface	to	configure	the
device,	e liminating	the	need	to	write	too	much	conditional	code.

CmbSDK	provides	two	basic	ReaderDevice	connection	layers:

MX	reader	for	barcode	scanning	with	devices	like	the	MX-1000	and	MX-1502
Camera	reader	for	barcode	scanning	with	the	built-in	camera	of	the	mobile	device

Barcode	Scanning	with	an	MX	Mobile	Terminal

The	cmbSDK	supports	Cognex’s	MX	Series	Mobile	Terminals	and	some	of	their
features	using	cmbSDK	are	the	following:

Hardware	t rigger:	MX	Mobile	Terminals	include	two	built-in	triggers	for	barcode
scanning.	They	also	support	a	pistol	grip	with	trigger	that	is	an	optional	accessory.
Illuminat ion	and	aiming:	MX	Mobile	Terminals	have	built-in	illumination	and	aiming,
making	it	unnecessary	to	have	a	live	preview	on	the	smartphone's	screen.
Conf igurat ions:	You	can	export	and	import	configuration	sets	to	MX	Mobile
Terminals	using	Cognex’s	DataMan	Setup	Tool	for	Windows,	the	Quick	Setup	mobile
application	or	cmbSDK.	You	can	have	multiple	scanning	applications,	each	of	which
requires	a	different	set	of	device	settings.
High-capacity	bat tery:	MX	Mobile	Terminals	have	an	integrated	battery	that
powers	the	MX	scanning	engine	and	the	mobile	device.	The	optional	pistol	grip
includes	a	second	battery	that	doubles	the	power	capacity	of	the	MX	Mobile	Terminal.

Debugging	on	MX	Mobile	Terminal

Normally	you	connect	your	mobile	device	(phone	or	tablet)	to	your	PC	via	the	USB	or
lightning	port	to	start	debugging.	If	an	MX	Mobile	Terminal	is	attached	to	your	mobile
device	via	the	USB	or	lightning	port	while	your	application	is	running,	you	need	to	debug

t it le:	Cognex	Mobile	Barcode	SDK	for	Android	(v2.2.x)	;	ver:	2.7.x 2	/	47

your	application	via	Wi-Fi.

Debugging	on	Android:

To	debug	using	Android	Studio,	connect	your	Android	device	via	USB	to	your	PC	and	make
sure	you	can	run	and	debug	your	application	using	the	USB	cable.
To	Connect	your	Android	device	to	Wi-Fi,	make	sure	that	Android	Tools	are	installed
beside	your	IDE.

1.	 Type	"adb	tcpip	5555"	to	set	the	device's	port	to	5555	in	the	terminal.
2.	 Get	the	mobile	device's	IP	address	by	typing	"adb	shell	ip	-f 	inet 	addr	show

wlan0"	or	find	it	manually	in	the	settings	menu	of	your	mobile	device.
3.	 Type	"adb	connect 	device_ip:5555"	to	connect	to	your	mobile	device.	This	prompts

a	message	if	it	is	connected	successfully.
4.	 Disconnect	the	USB	cable	from	your	mobile	device.
5.	 Connect	your	mobile	device	to	the	MX	Mobile	Terminal	and	proceed	to	debug	your

app	as	if	it	was	connected	via	cable.

Note:	After	you	connect	your	mobile	device	to	the	MX	Mobile	Terminal,	Wi-Fi
connection	might	be	lost.	If	the	Wi-Fi	connection	is	lost,	repeat	step	3.

6.	 When	you	are	done,	type	"adb	-s	device_ip:5555	usb"	to	switch	your	device	back
to	USB	connection	mode.

CAUTION:	Leaving	the	wireless	debugging	option	enabled	is	not	recommended	as
anyone	in	your	network	can	connect	to	your	device	in	debug,	even	if	you	are	in	data
network.	Do	it	only	when	you	are	connected	to	a	trusted	WiFi	and	disconnect	when
you	are	done.

Barcode	Scanning	with	a	Smartphone

Barcode	Scanning	with	a	Smartphone	or	Tablet

The	differences	in	the	capabilities	of	smartphones	as	barcode	scanning	devices	result	in
a	user	experience	different	from	purpose-built	scanners,	impacting	the	design	of	the
mobile	barcode	scanning	application.	By	following	a	few	simple	guidelines,	you	can
develop	applications	with	the	cmbSDK	that	work	the	same	way	when	using	an	MX	Mobile
Terminal	or	the	built-in	camera	of	a	mobile	device.

To	initiate	barcode	scanning	without	a	dedicated	hardware	trigger,	see	Mobile	Device
Triggering.
To	aim	for	barcode	scanning	with	a	smartphone	that	does	not	have	an	aimer,	see
Mobile	Device	Aiming.

https://cmbdn.cognex.com/v2.2.x/knowledge/cognex-mobile-barcode-sdk-for-android/barcode-scanning-with-a-smartphone-android/mobile-device-triggering
https://cmbdn.cognex.com/v2.2.x/knowledge/cognex-mobile-barcode-sdk-for-android/barcode-scanning-with-a-smartphone-android/mobile-device-aiming

t it le:	Cognex	Mobile	Barcode	SDK	for	Android	(v2.2.x)	;	ver:	2.7.x 3	/	47

To	choose	the	most	suitable	orientation	for	barcode	scanning,	see	Mobile	Device
Orientation.
To	reduce	the	CPU	usage	of	the	mobile	device	when	it	performs	image	analysis	and
barcode	decoding,	see	Optimizing	Mobile	Device	Performance.

CmbSDK	employs	a	default	set	of	options	for	barcode	reading	with	the	built-in	camera	of
the	mobile	device.	However,	cmbSDK	does	not	implement	saved	configurations	for	the
camera	reader.	This	means	that	every	time	an	application	starts	that	uses	the	camera
reader,	it	starts	with	the	default	settings	of	the	camera	reader.	For	a	list	of	the	default
settings,	see	the	Appendix.

Mobile	Device	Triggering

Without	a	hardware	trigger,	mobile	devices	must	use	alternative	methods	to	initiate
barcode	scanning.	The	cmbSDK	supports	three	methods	to	trigger	barcode	scanning:

Applicat ion	or	workf low	driven	t rigger:	The	application	code	or	the	business
logic/workflow	of	the	application	invokes	the	scanning	module.	In	simple	programming
terms,	it	is	calling	a	function	like	startScanner().
Virtual	t rigger:	To	start	or	stop	the	scanning	process	the	application	provides	a
button	on	the	screen.	Depending	on	the	application	design,	you	need	to	press	and
hold	the	virtual	button	to	keep	the	scanner	running,	this	invokes	the	scanning	module.
Simulated	t rigger:	Press	one	of	the	volume-down	buttons	to	start	or	stop	the
scanning	process	just	like	when	you	pull	a	trigger	on	a	purpose-built	scanner.

Mobile	Device	Aiming

The	built-in	camera	provides	a	live-stream	preview	on	the	display	of	the	mobile	device
for	barcode	aiming.	Reposition	the	mobile	device	until	the	barcode	appears	in	the	fie ld	of
view	of	the	built-in	camera	and	the	application	decodes	it.	CmbSDK	provides	a	built-in
preview	control	that	can	be	displayed	in	partial	or	full	screen,	and	in	either	portrait	or
landscape	orientation.

The	cmbSDK	also	supports	passive	aimers:	devices	attached	to	the	mobile	device	or	its
case	that	use	the	LED	flash	of	the	device	as	a	light	source	to	project	an	aiming	or
targeting	pattern.	The	mobile	device	can	project	an	aimer	pattern	similar	to	a	purpose-
built	scanner	so	live-preview	is	not	needed.	However,	by	using	the	LED	flash	as	an	aimer,
general	scanning	illumination	is	not	available.

Mobile	Device	Orientat ion

The	cmbSDK	supports	portrait	orientation,	landscape	orientation	and	auto-rotation	for	both
the	presentation	of	the	barcode	preview	and	the	scan	direction.	Mobile	devices	can	scan
most	barcodes	regardless	of	the	orientation	of	the	application	and/or	the	mobile	device.

https://cmbdn.cognex.com/v2.2.x/knowledge/cognex-mobile-barcode-sdk-for-android/barcode-scanning-with-a-smartphone-android/mobile-device-orientation
https://cmbdn.cognex.com/v2.2.x/knowledge/cognex-mobile-barcode-sdk-for-android/barcode-scanning-with-a-smartphone-android/optimizing-mobile-device-performance
https://cmbdn.cognex.com/v2.2.x/knowledge/cognex-mobile-barcode-sdk-for-android/appendix-dmcc-for-the-camera-reader

t it le:	Cognex	Mobile	Barcode	SDK	for	Android	(v2.2.x)	;	ver:	2.7.x 4	/	47

PORTRAIT 	OR
LANDSCAPE PORTRAIT 	ONLY

Most	barcodes	can	be
scanned	in	either

portrait	or	landscape
orientation.

Most	well	defined	and	moderately	sized
barcodes	can	be	scanned	in	a	portrait

orientation,	which	is	the	most	natural	way	to	hold
the	mobile	device.

Example:	QR,	Data	Matrix,	Maxicode.

Long,	dense,	or	poorly	formed
barcodes	are	easier	to	scan	in	a
landscape	orientation,	which	is	of

	

Optimizing	Mobile	Device	Performance

Mobile	devices	are	an	ideal	platform	for	barcode	decoding.	The	cmbSDK	is	optimized	for
mobile	environment,	but	image	analysis	and	barcode	decoding	is	still	a	CPU	intensive
activity.	Since	these	processes	share	the	mobile	device's	CPU	with	the	mobile	operating
system	(OS),	services,	and	other	applications,	these	processes	optimize	your	barcode
scanning	application	and	limit	it	to	only	using	the	features	of	the	cmbSDK	that	they	need.

To	optimize	your	application:

Enable	decoding	only	for	the	barcode	types	the	application	needs	to	scan.	The
cmbSDK	supports	the	decoding	of	almost	40	different	barcode	types	and	subtypes,
enabling	all	results	in	low	performance	and	unexpected	errors.
Do	not	enable	certain	symbologies	and/or	advanced	features	at	the	same	time.	
Optimize	your	camera	resolution.	By	default,	the	cmbSDK	uses	HD	images	for
barcode	decoding.
Use	an	appropriate	decoder	effort	level.	The	cmbSDK	has	a	configurable	effort	level
that	controls	how	aggressively	it	performs	image	analysis.	The	cmbSDK	uses	a	default
value	(level	2)	that	is	sufficient	for	most	barcodes.	Using	a	higher	level	can	result	in
better	decoding	of	poorer	quality	barcodes,	resulting	in	slower	performance.

No	barcode	symbologies	are	enabled	by	default,	when	the	cmbSDK	is	initialized	for	use
with	the	mobile	device's	built-in	camera.

	

Using	cmbSDK

Installing	cmbSDK

Installing	the	Android	cmbSDK

t it le:	Cognex	Mobile	Barcode	SDK	for	Android	(v2.2.x)	;	ver:	2.7.x 5	/	47

Note:	cmbSDK	is	compatible	with	Android	Studio.

1.	 Download	the	Cognex	Mobile	Barcode	SDK	for	Android	from	the	Cognex	Mobile
Barcode	Scanner	Solutions	page.

2.	 Start	Android	Studio	and	add	the	SDK	AAR	file 	as	a	module	to	your	project:

1.	 Right	click	your	app	module,	select	New	>	Module	>	Import	.JAR/.AAR
Package,	and	click	Next .

2.	 Browse	the	cmbSDK	.AAR	file 	in	the	File	name	fie ld,	and	click	Finish.

3.	 After	the	new	module	is	available,	right	click	your	app	module,	select	the	Open
Module	Set t ings,	and	choose	the	Dependencies	tab.

4.	 Click	the	+	sign	at	the	top	of	the	Declared	Dependencies	dialog	box	and	select	the	3
Module	dependency.

5.	 Select	cmbsdklib	from	the	popup	window	and	click	OK,	making	the	cmbsdklib	module
available	under	the	Dependencies	tab.

6.	 Install	the	MX	Connect	application	from	the	Play	Store	to	communicate	with	MX	mobile
terminals.

Installing	the	iOS	cmbSDK:

1.	 Install	the	latest	XCode	for	iOS	Development.
2.	 Download	the	Cognex	Mobile	Barcode	SDK	for	iOS.

Licensing	cmbSDK

https://cmbdn.cognex.com/download
https://play.google.com/store/apps/details?id=com.cognex.mxconnect&hl=en
https://itunes.apple.com/us/app/xcode/id497799835
https://cmbdn.cognex.com/files/download_latest/cmbSDK_iOS

t it le:	Cognex	Mobile	Barcode	SDK	for	Android	(v2.2.x)	;	ver:	2.7.x 6	/	47

To	use	cmbSDK	for	barcode	scanning	with	a	mobile	device	without	an	MX	mobile	terminal,
you	need	to	install	a	license	key.	If	the	license	key	is	missing,	asterisks	will	appear
instead	of	scanned	results.

Contact	your	Cognex	Sales	Representative	for	information	on	how	to	obtain	a	license
key,	including	30-day	trial	licenses.

Android:	

1.	 After	obtaining	your	license	key,	add	the	following	line	in	the	AndroidManifest.xml	file
of	your	application	under	the	application	tag:

<meta-data	android:name="MX_MOBILE_LICENSE"	android:value="YOUR_MX_MOBILE_LICENSE"/>

2.	 Replace	YOUR_MX_MOBILE_LICENSE	with	your	license	key.

<application
								android:allowBackup="true"
								android:icon="@mipmap/ic_launcher"
								android:label="@string/app_name"
								android:roundIcon="@mipmap/ic_launcher"
								android:supportsRtl="true"
								android:theme="@style/AppTheme">
								<activity	android:name=".ScannerActivity"	android:configChanges="orientation|screenSize
">
												<intent-filter>
																<action	android:name="android.intent.action.MAIN"	/>

																<category	android:name="android.intent.category.LAUNCHER"	/>
												</intent-filter>
								</activity>

								<meta-data	android:name="MX_MOBILE_LICENSE"	
											android:value="g/9ytJzcja+sxt4DTEDxR4hp6sZh9bmL97vUx+EE9uY="	/>

</application>

You	can	also	add	the	license	key	by	copying	the	text	below	when	you	create	new
instance	from	ReaderDevice.

case	PhoneCamera:
										readerDevice	=	ReaderDevice.getPhoneCameraDevice(this,	param_cameraMode,
													PreviewOption.DEFAULTS,	null,	"SDK_KEY");

iOS:

t it le:	Cognex	Mobile	Barcode	SDK	for	Android	(v2.2.x)	;	ver:	2.7.x 7	/	47

After	obtaining	your	license	key,	add	it	as	a	String	in	your	application's	Info.plist	file 	under
the	key	MX_MOBILE_LICENSE.

Migrat ing	from	a	DataMan	SDK	for	MX	Readers	to	cmbSDK

1.	 Install	the	MX	Connect	application	from	the	Play	store.	This	app	enables	your	mobile
phone	to	seamlessly	connect	to	Cognex	MX	readers.

2.	 Install	cmbSDK	to	your	project.

3.	 Use	DataManSystem.createDataManSystemForMXDevice()	factory	method	to	create	a
DatamanSystem	object.

4.	 Remove:

All	DataManSystem.createDataManSystemOverUsb()	methods	from	your	project.
All	DataManSystem.createDataManSystemOverUsbAccessory()	methods	from	your
project.
USB_	DEVICE-ATTACHED	and	USB_ACCESSORY_ATTACHED	Intent	filters	and	meta-
data	from	the	AndroidManifest.xml	file .
USB	and	accessory	descriptor	xml	files	from	the	XML	folder.

Writ ing	a	Mobile	Applicat ion

CmbSDK	provides	a	high-level,	abstract	interface	for	supported	scanning	devices:	the
MX	mobile	terminals	and	the	camera	of	the	mobile	phone.

The	primary	interface	between	your	application	and	the	barcode	scanning	device	is	the
ReaderDevice	class.	The	ReaderDevice	class	represents	an	abstraction	layer	to	the

http://play.google.com/store/apps/details?id=com.cognex.mxconnect&hl=en
https://cmbdn.cognex.com/v2.2.x/knowledge/cognex-mobile-barcode-sdk-for-android/using-cmbsdk/installing-cmbsdk

t it le:	Cognex	Mobile	Barcode	SDK	for	Android	(v2.2.x)	;	ver:	2.7.x 8	/	47

device,	handling	all	communication	and	necessary	hardware	management,	such	as
scanning	with	a	smartphone.	

Perform	the	following	steps	to	use	cmbSDK:	

1.	 Create	an	instance	from	the	ReaderDevice	class	with	the	type	of	scanning	device	you
want	to	use	(MX	reader	or	camera	reader).

2.	 Connect	to	the	ReaderDevice	instance	you	created.

3.	 Configure	the	ReaderDevice	instance,	if	necessary.

4.	 Start	scanning.	

Initialization	and	connection	need	to	be	performed	only	once	in	your	application.

MX	mobile	terminals	need	to	be	reconfigured	if	they	become	disconnected	due	to	for
example	timing	out	or	drained	battery.	To	avoid	this,	you	can	save	the	configuration.
Your	application	can	use	both	an	MX	mobile	terminal	and	camera	scanning.	In	this
case	you	have	to	establish	a	new	connection	to	a	different	device	after	disconnecting
from	the	current	device.	You	can	check	our	sample	app	for	demonstration	to	see	how
it	works.

Sett ing	up	an	Applicat ion	to	Use	cmbSDK	for	Android

Perform	the	following	steps	to	set	up	and	start	using	cmbSDK:

1.	 Import	the	following	package	members,	or	just	the	classes	you	use:

import	com.cognex.dataman.sdk.*
import	com.cognex.mobile.barcode.sdk.*

2.	 According	to	your	needs:

If	you	want	to	show	partial	camera	preview,	you	need	the	ViewGroup	container,
for	example	Relat iveLayout ,	otherwise	if	you	want	to	use	full	screen	preview
(default)	you	don't	need	any	additional	containers.	For	example	if	we	want	to	use
partial	view	in	our	sample	application	add	this	RelativeLayout	inside
act ivity_scanner.xml	at	the	end	of	ConstraintLayout	and	use	it	in	reader	device

t it le:	Cognex	Mobile	Barcode	SDK	for	Android	(v2.2.x)	;	ver:	2.7.x 9	/	47

constructor	(ViewGroup	parameter)	when	reader	device	is	initialized.

<RelativeLayout
			android:id="@+id/rlPreviewContainer"
			android:layout_width="match_parent"
			android:layout_height="200dp"
			app:layout_constraintTop_toTopOf="parent"
			app:layout_constraintStart_toStartOf="parent"
			app:layout_constraintStart_toEndOf="parent"	/>

If	you	want	to	display	the	last	scanned	image,	you	need	the	ImageView
container	for	showing	the	last	frame	of	a	preview	or	scanning	session.

If	you	want	to	display	the	scanned	result	as	a	text,	you	need	a	TextView.

3.	 Set	up	the	following	interfaces	to	monitor	the	connection	state	of	the	reader	and
receive	information	about	the	read	code:

public	class	ScannerActivity	extends	AppCompatActivity	implements
								OnConnectionCompletedListener,	ReaderDeviceListener,
								ActivityCompat.OnRequestPermissionsResultCallback	{
....

//	The	connect	method	has	completed,	here	you	can	see	whether	there	was	an	error	with	establish
ing	the	connection	or	not
				@Override
				public	void	onConnectionCompleted(ReaderDevice	readerDevice,	Throwable	error)	{
								//	If	we	have	valid	connection	error	param	will	be	null,
								//	otherwise	here	is	error	that	inform	us	about	issue	that	we	have	while	connecting	to	
reader	device
								if	(error	!=	null)	{

												//	ask	for	Camera	Permission	if	necessary
												if	(error	instanceof	CameraPermissionException)
																ActivityCompat.requestPermissions(((ScannerActivity)	this),	new	String[]{Manife
st.permission.CAMERA},	REQUEST_PERMISSION_CODE);

												updateUIByConnectionState();
								}
				}

//	This	is	called	when	a	connection	with	the	self.readerDevice	has	been	changed.
				//	The	readerDevice	is	usable	only	in	the	"ConnectionState.Connected"	state
				@Override
				public	void	onConnectionStateChanged(ReaderDevice	reader)	{
								clearResult();
								if	(reader.getConnectionState()	==	ConnectionState.Connected)	{
												//	We	just	connected,	so	now	configure	the	device	how	we	want	it
												configureReaderDevice();
								}

https://cmbdn.cognex.com/v2.2.x/knowledge/cognex-mobile-barcode-sdk-for-android/using-cmbsdk/using-the-camera-reader

t it le:	Cognex	Mobile	Barcode	SDK	for	Android	(v2.2.x)	;	ver:	2.7.x 10	/	47

								isScanning	=	false;
								updateUIByConnectionState();
				}

//	This	is	called	after	scanning	has	completed,	either	by	detecting	a	barcode,	canceling	the	sc
an	by	using	the	on-screen	button	or	a	hardware	trigger	button,	or	if	the	scanning	timed-out
				@Override
				public	void	onReadResultReceived(ReaderDevice	readerDevice,	ReadResults	results)	{
								clearResult();

								if	(results.getSubResults()	!=	null	&&	results.getSubResults().size()	>	0)	{
												for	(ReadResult	subResult	:	results.getSubResults())	{
																createResultItem(subResult);
												}
								}	else	if	(results.getCount()	>	0)	{
												createResultItem(results.getResultAt(0));
								}

								isScanning	=	false;
								btnScan.setText("START	SCANNING");
								resultListAdapter.notifyDataSetChanged();
				}

//	This	is	called	when	a	MX-1xxx	device	has	became	available	(USB	cable	was	plugged,	or	MX	devi
ce	was	turned	on),
				//	or	when	a	MX-1xxx	that	was	previously	available	has	become	unavailable	(USB	cable	was	un
plugged,	turned	off	due	to	inactivity	or	battery	drained)
				@Override
				public	void	onAvailabilityChanged(ReaderDevice	reader)	{
								if	(reader.getAvailability()	==	Availability.AVAILABLE)	{
												connectToReaderDevice();
								}	else	if	(reader.getAvailability()	==	Availability.UNAVAILABLE)	{
												AlertDialog.Builder	alert	=	new	AlertDialog.Builder(this);
												alert
																				.setTitle("Device	became	unavailable")
																				.setPositiveButton("OK",	null)
																				.create()
																				.show();
								}
				}

4.	 Instantiate	a	ReaderDevice	object.

Using	the	MX	Reader

Initialize	a	Reader	Device	object	for	MX	readers	using	the	following	factory	method:	

case	MX:
						readerDevice	=	ReaderDevice.getMXDevice(this);

						//Listen	when	a	MX	device	has	became	available/unavailable
						if	(!availabilityListenerStarted)	{

t it le:	Cognex	Mobile	Barcode	SDK	for	Android	(v2.2.x)	;	ver:	2.7.x 11	/	47

										readerDevice.startAvailabilityListening();
										availabilityListenerStarted	=	true;
						}

The	availability	of	the	MX	mobile	terminal	can	change	when	the	device	turns	on	or	off,	or
if	the	USB	cable	gets	connected	or	disconnected.	You	can	handle	those	changes	using
the	following	ReaderDeviceListener	interface	method:	

public	void	onAvailabilityChanged(ReaderDevice	reader);

	

Using	the	Camera	Reader

You	are	recommended	to	use	an	MX	mobile	terminal	to	scan	barcodes.	However,
cmbSDK	also	supports	using	the	built-in	camera	of	a	mobile	device.	This	includes	the
support	of	optional	external	aimers	or	illumination,	and	the	customization	of	the	live-
stream	preview's	appearance.

To	scan	barcodes	using	the	built-in	camera	of	a	mobile	device,	initialize	the	ReaderDevice
object	using	the	getPhoneCameraDevice	static	method.	The	camera	reader	has	several
options	when	initialized.	The	following	parameters	are	required:

Context
CameraMode
PreviewOption
ViewGroup
RegistrationKey
CustomData

The	Context	parameter	provides	a	reference	to	the	activity	you	are	currently	in.

The	CameraMode	parameter	is	of	type	CameraMode	defined	in	CameraMode.java	and
it	accepts	one	of	the	values	listed	in	the	following	table.	

These	modes	provide	the	following	default	settings	for	the	reader:

The	zoom	feature	is	available	and	a	button	to	control	it	is	visible	on	the	live-stream
preview	(if	displayed).
The	simulated	hardware	trigger	(volume	control	buttons)	is	disabled.
When	startScanning()	is	called,	the	decoding	process	is	started.

Based	on	the	selected	mode,	additional	illumination	options	and	behaviors	are	set,	also
listed	in	the	table.

t it le:	Cognex	Mobile	Barcode	SDK	for	Android	(v2.2.x)	;	ver:	2.7.x 12	/	47

VALUE DESCRIPT ION ILLUMINATION
LIVE-

STREAM
PREVIEW

NO_AIMER

Initializes	the	reader
to	use	a	live-stream

preview	on	the
mobile	device

screen	so	the	user
can	position	the

barcode	within	the
camera’s	field	of
view	for	detection
and	decoding.	Use

this	mode	if	the
mobile	device	does
not	have	an	aiming

accessory.

Illumination	is
available	and	a

button	to	control
it	is	visible	on
the	live-stream

preview.
Displayed

If	commands	are
sent	to	the

reader	for	aimer
control,	they	are

ignored.

PASSIVE_AIMER

Initializes	the	reader
to	use	a	passive
aimer.	No	live-

stream	preview	is
available	on	the

device	screen	in	this
mode,	since	an
aiming	pattern	is

projected.

Illumination	is	not
available,	and
the	live-stream
preview	does
not	have	an
illumination

button.

Not
Displayed

If	commands	are
sent	to	the
reader	for
illumination

control,	they	are
ignored	because
it	is	assumed	in
this	mode	that
the	built-in	LED
of	the	mobile

device	is	being
used	for	the

aimer.

Initializes	the	reader
to	use	the	front
camera	of	the

mobile	device,	if
available.	Use	this
configuration	with

The	front	camera
is	used.

Illumination	is	not
available	and	the

live-stream

t it le:	Cognex	Mobile	Barcode	SDK	for	Android	(v2.2.x)	;	ver:	2.7.x 13	/	47

FRONT_CAMERA care	because	most
front	facing	cameras

do	not	have	auto
focus	and

illumination,	and
provide	significantly

lower	resolution
images.	Illumination
is	not	available	in

this	mode.

preview	does
not	have	an
illumination

button.

Displayed

If	commands	are
sent	to	the

reader	for	aimer
or	illumination

control,	they	are
ignored.

The	PreviewOption	parameter	is	of	type 	PreviewOption	defined	in	PreviewOpt ion.java,
and	is	used	to	change	the	reader’s	default	values	or	override	defaults	derived	from	the
selected	CameraMode.	You	can	specify	the	following	options:

VALUE DESCRIPT ION

DEFAULTS Accept	all	defaults	set	by	the
CameraMode.

NO_ZOOM_BUTTON
Hides	the	zoom	button	on	the	live-stream

preview,	preventing	the	user	from
adjusting	the	zoom	of	the	mobile	device

camera.

NO_ILLUMINATION_BUTTON
Hides	the	illumination	button	on	the	live-

stream	preview,	preventing	the	user	from
toggling	the	illumination.

HARDWARE_TRIGGER

Enables	a	simulated	hardware	trigger	(the
volume	down	button)	for	starting	scanning

on	the	mobile	device.	This	button	only
starts	scanning	when	pressed,	it	does	not

need	to	be	held	like	a	purpose-built
scanner’s	trigger,	and	pressing	it	a

second	time	does	not	stop	the	scanning
process.

PAUSED

If	using	a	live-stream	preview,	the
preview	is	displayed	when	the

startScanning()	method	is	called,	but	the
reader	does	not	start	decoding	until	the
user	presses	the	on-screen	button	to

start	the	scanning	process.

t it le:	Cognex	Mobile	Barcode	SDK	for	Android	(v2.2.x)	;	ver:	2.7.x 14	/	47

ALWAYS_SHOW
Forces	a	live-stream	preview	to	be
displayed	even	if	an	aiming	mode	is

selected	(for	example	CameraMode	==
PASSIVE_AIMER).

HIGH_RESOLUTION

Uses	the	device	camera	in	higher
resolution,	changing	the	default

1280x720	resolution	to	1920x1080	on
devices	that	support	it,	and	to	the	default
resolution	on	devices	that	do	not	support

it.	This	can	help	with	scanning	small
barcodes,	but	increases	the	decoding

time	as	there	is	more	data	to	process	in
each	frame.

HIGH_FRAME_RATE
Uses	the	device's	camera	in	60	FPS

instead	of	the	default	30	FPS	to	provide	a
smoother	camera	preview.

SHOW_CLOSE_BUTTON Show	close	button	in	partial	view.

The	ViewGroup	(optional)	parameter	specifies	the	container	for	the	live-stream	preview.
If	the	parameter	is	left	null,	a	full	screen	preview	is	used.

The	RegistrationKey	(optional)	parameter	is	used	to	license	your	SDK	with	license	key
that	you	have

The	CustomData	(optional)	parameter	is	used	for	custom	tracking

Example

Create	a	reader	with	no	aimer,	no	zoom	button,	and	using	a	soft	trigger:

readerDevice	=	ReaderDevice.getPhoneCameraDevice(this,	CameraMode.NO_AIMER,	PreviewOption.NO_ZOOM_BU
TTON	|	PreviewOption.PAUSED);

This	starts	a	preview	with	the	scanner	paused	and	a	soft	trigger	button	to	toggle
scanning.	After	pressing	the	soft	trigger	button,	the	expected	preview	look	is	this:

t it le:	Cognex	Mobile	Barcode	SDK	for	Android	(v2.2.x)	;	ver:	2.7.x 15	/	47

The	viewfinder	in	the	image	has	an	active	scanning	surface	as	a	result	of	having	set
active	symbologies.	For	more	details,	see	Enabling	Symbologies.

Request ing	Camera	Permission	for	Phone	Camera	Scanner

From	Android	6.0	and	above	you	need	to	request	permission	from	the	user	to	access	the
built-in	camera	of	the	mobile	device.

If	the	camera	cannot	be	opened	due	to	permission	issues,	the
onConnectionCompleted(readerDevice,	error)	callback	contains	a
CameraPermissionException	in	the	error	parameter.	You	can	check	for	this	exception	type
with	the	instanceof	operator	and	request	permission	within	the	Activity.

if	(error	instanceof	CameraPermissionException)
						ActivityCompat.requestPermissions(((ScannerActivity)	this),	new	String[]{Manifest.permission.C
AMERA},	REQUEST_PERMISSION_CODE);

https://cmbdn.cognex.com/v2.2.x/knowledge/cognex-mobile-barcode-sdk-for-android/cmbsdk-for-android/enabling-symbologies

t it le:	Cognex	Mobile	Barcode	SDK	for	Android	(v2.2.x)	;	ver:	2.7.x 16	/	47

You	need	to	implement	the	ActivityCompat.OnRequestPermissionResultCallback	interface
in	your	Activity	to	catch	the	user	permission	result.
To	handle	user	response	in	onRequestPermissionResult(…),	you	can	use	the	following
code	to	retry	connecting	to	the	phone	camera:

@Override
				public	void	onRequestPermissionsResult(int	requestCode,	@NonNull	String[]	permissions,	@NonNull	
int[]	grantResults)	{
								//	Check	result	from	permission	request.	If	it	is	allowed	by	the	user,	connect	to	readerDevi
ce
								if	(requestCode	==	REQUEST_PERMISSION_CODE)	{
												if	(grantResults.length	>	0	&&	grantResults[0]	==	PackageManager.PERMISSION_GRANTED)	{
																if	(readerDevice	!=	null	&&	readerDevice.getConnectionState()	!=	ConnectionState.Con
nected)
																				readerDevice.connect(ScannerActivity.this);
												}	else	{
																if	(ActivityCompat.shouldShowRequestPermissionRationale(((ScannerActivity)	this),	Ma
nifest.permission.CAMERA))	{
																				AlertDialog.Builder	builder	=	new	AlertDialog.Builder(this)
																												.setMessage("You	need	to	allow	access	to	the	Camera")
																												.setPositiveButton("OK",	new	DialogInterface.OnClickListener()	{
																																@Override
																																public	void	onClick(
																																								DialogInterface	dialogInterface,
																																								int	i)	{
																																				ActivityCompat.requestPermissions(ScannerActivity.this,	new	Stri
ng[]{Manifest.permission.CAMERA},
																																												REQUEST_PERMISSION_CODE);
																																}
																												})
																												.setNegativeButton("Cancel",	null);
																				AlertDialog	dialog	=	builder.create();
																				dialog.show();
																}
												}
								}
				}

	

Connect ing	to	the	Reader	Device

Before	connecting,	set	the	ReaderDeviceListener	object	to	receive	events:	

readerDevice.setReaderDeviceListener(this);

For	details,	see	step	3	in	Setting	up	you	application	to-use	the	Cognex	Mobile	Barcode
SDK	for	Android.

https://cmbdn.cognex.com/v2.2.x/knowledge/cognex-mobile-barcode-sdk-for-android/using-cmbsdk/setting-up-an-application-to-use-cmbsdk-for-android

t it le:	Cognex	Mobile	Barcode	SDK	for	Android	(v2.2.x)	;	ver:	2.7.x 17	/	47

Additionally,	you	can	enable	sending	the	last	triggered	image	and	SVG	from	the	reader:	

readerDevice.enableImage(true);
readerDevice.enableImageGraphics(true);

Invoke	the	connect	method	after	initializ ing	the	ReaderDevice	and	setting	a	listener
method	to	handle	responses	from	the	reader.	The	connect	method	takes
OnConnectionCompletedListener	as	parameter:	

	//Make	sure	the	device	is	turned	ON	and	ready
readerDevice.connect(ScannerActivity.this);

The	following	listener	methods	are	called	with	the	new	ReaderDevice	status	information:

public	void	onConnectionStateChanged(ReaderDevice	reader);
public	void	onConnectionCompleted(ReaderDevice	reader,	Throwable	err)

The	onConnectionCompleted	method	passed	as	a	parameter	of	connect	is	also	invoked
as	the	connection	process	completes.	If	there	was	a	connection	error,	this	method
provides	a	Throwable	object.

Scanning	Barcodes

After	connecting	to	the	scanning	device,	you	may	need	to	change	some	of	its	settings.
CmbSDK	provides	a	set	of	high-level	and	device-independent	APIs	for	setting	and
retrieving	the	current	configuration	of	the	device.

You	can	start	scanning	barcodes	with	a	properly	configured	reader	by	calling	the
startScanning	method	from	your	ReaderDevice	class:

readerDevice.startScanning();

If	using	an	MX	mobile	terminal,	you	can	press	a	trigger	button	on	the	device	to	turn
the	scanner	on	and	read	a	barcode.
If	using	the	camera	reader,	cmbSDK	starts	the	camera,	displays	the	configured	live-
stream	preview,	and	begins	analyzing	the	frames	from	the	video	stream,	looking	for	a
configured	barcode	symbology.

t it le:	Cognex	Mobile	Barcode	SDK	for	Android	(v2.2.x)	;	ver:	2.7.x 18	/	47

You	can	stop	scanning	with	the	following:

readerDevice.stopScanning();

Scanning	stops	under	one	of	the	following	conditions:

The	reader	found	and	decoded	a	barcode.
You	released	the	trigger	or	pressed	the	stop	button	on	the	live-stream	preview
screen.
The	camera	reader	timed	out	without	finding	a	barcode.
The	application	calls	the	stopScanning()	method.

When	a	barcode	is	decoded	successfully,	you	receive	a	ReadResults	iterable	result
collection	object	in	the	ReaderDevice	listener	method.	The	onReadResultReceived
listener	method	is	invoked	either	because	the	reader	decoded	a	barcode	or	the	scanning
process	was	complete.	

Example

//	This	is	called	after	scanning	has	completed,	either	by	detecting	a	barcode,	canceling	the	scan	by
	using	the	on-screen	button	or	a	hardware	trigger	button,	or	if	the	scanning	timed-out
				@Override
				public	void	onReadResultReceived(ReaderDevice	readerDevice,	ReadResults	results)	{
								clearResult();

								if	(results.getSubResults()	!=	null	&&	results.getSubResults().size()	>	0)	{
												for	(ReadResult	subResult	:	results.getSubResults())	{
																createResultItem(subResult);
												}
								}	else	if	(results.getCount()	>	0)	{
												createResultItem(results.getResultAt(0));
								}

								isScanning	=	false;
								btnScan.setText("START	SCANNING");
								resultListAdapter.notifyDataSetChanged();
				}

	

Enabling	Symbologies

CmbSDK	does	not	enable	any	symbologies	by	default	for	barcode	reading	with	the	built-
in	camera	of	the	mobile	device.	You	must	enable	all	barcode	symbologies	your
application	needs	to	scan	to	achieve	optimal	scanning	performance.	For	more	details,	see

t it le:	Cognex	Mobile	Barcode	SDK	for	Android	(v2.2.x)	;	ver:	2.7.x 19	/	47

Optimizing	Mobile	Device	Performance.

Individual	symbologies	can	be	enabled	using	the	following	method	of	the	ReaderDevice
class:

public	void	setSymbologyEnabled(final	Symbology	symbology,	final	boolean	enable,	final	OnSymbologyLi
stener	listener)
readerDevice.setSymbologyEnabled(Symbology.DATAMATRIX,	true,	null);
readerDevice.setSymbologyEnabled(Symbology.UPC_EAN,	true,	null);

All	symbologies	used	for	the	symbology	parameter	in	this	method	can	be	found	in
ReaderDevice.java.	

Examples	

	/*	Enable	QR	scanning	*/
readerDevice.setSymbologyEnabled(Symbology.QR,	true,	null);

You	can	also	use	the	same	method	to	disable	symbologies:	

/	*	Disable	Code	25	scanning	*/	readerDevice.setSymbologyEnabled(Symbology.C25,	false,	null);

You	can	implement	the	method	for	OnSymbologiesListener	to	check	the	result	of	the
symbology	change:

@Override
public	void	onSymbologyEnabled(ReaderDevice	reader,	Symbology	symbology,	Boolean	enabled,	Throwable	
error)	{
if	(error	!=	null)	{
/*	Unsuccessful
probably	the	symbology	is	unsupported	by	the	current	device,	or	there	is	a	problem	with	the	connecti
on	between	the	readerDevice	and	MX	device	*/
}	else	{
//	Success	}
}

	

Illuminat ion	Control

https://cmbdn.cognex.com/v2.2.x/knowledge/cognex-mobile-barcode-sdk-for-android/barcode-scanning-with-a-smartphone/optimizing-mobile-device-performance

t it le:	Cognex	Mobile	Barcode	SDK	for	Android	(v2.2.x)	;	ver:	2.7.x 20	/	47

If	your	reader	device	is	equipped	with	illumination	lights,	you	can	control	them:	when
scanning	starts,	you	can	turn	them	on	or	off.	Use	the	following	method	of	your	Reader
Device	object:	

readerDevice.setLightsOn(true,	null);

You	can	implement	the	interface	method	for	OnLightsListener,	which	is	the	second
parameter	of	the	method.	

public	class	ScannerActivity	extends	AppCompatActivity	implements	OnLightsListener	{
@Override
public	void	onLightsOnCompleted(ReaderDevice	reader,	Boolean	on,	Throwable	error)	{
if	(error	!=	null)	{	//	Unsuccessful
}	else	{
//	Success	}
}	}

Not	all	devices	and	device	modes	support	illumination	control.	

Camera	Zoom	Sett ings

If	the	built-in	camera	of	a	mobile	device	is	used	as	the	reader	device,	you	can
configure	zoom	levels	and	how	they	are	used.	There	are	three	zoom	levels:

normal:	not	zoomed	(100%)
level	1	zoom	(150%	on	Android	by	default)
level	2	zoom	(300%	on	Android	by	default)

The	SET	CAMERA.ZOOM-PERCENT	[100-MAX]	[100-MAX]	command	is	for	configuring	how
far	the	two	levels	zoom	in	percentage.	100	is	not	zoomed	and	MAX	(goes	up	to
1000)	zooms	as	far	as	the	device	is	capable	of.	The	first	argument	is	used	for	setting
level	1	zoom,	and	the	second	for	level	2	zoom.

You	can	check	the	current	zoom	setting	with	the	GET	CAMERA.ZOOM-PERCENT	command,
which	returns	two	values:	level	1	and	level	2	zoom.

Example

readerDevice.getDataManSystem().sendCommand("SET	CAMERA.ZOOM-PERCENT	250	500");

t it le:	Cognex	Mobile	Barcode	SDK	for	Android	(v2.2.x)	;	ver:	2.7.x 21	/	47

Note:	The	camera	needs	to	be	started	within	cmbSDK	at	least	once	to	have	a	valid
maximum	zoom	level.	It	means	that	if	you	set	the	zoom	level	to	1000	and	the	device
can	only	go	up	to	600,	the	GET	CAMERA.ZOOM-PERCENT	command	returns	1000	as
long	as	camera	is	not	opened,	but	it	returns	600	afterwards.

GET/SET	CAMERA.ZOOM	0-2	is	another	command	that	sets	the	zoom	level	or	returns	the
actual	setting.	Possible	values	for	the	SET	command	are:

0	-	normal	(not	zoomed)
1	-	level	1	zoom
2	-	level	2	zoom

You	can	call	this	command	before	or	even	during	scanning,	and	the	zoom	goes	up	to	the
configured	level.	If	scanning	is	finished,	the	value	is	reset	to	normal	behavior	(0).

Example

readerDevice.getDataManSystem().sendCommand("SET	CAMERA.ZOOM	2");

	

Camera	Overlay	Customizat ion

When	using	the	mobile	device's	camera,	cmbSDK	allows	you	to	see	the	camera	preview
inside	a	preview	container	or	in	full	screen.	This	preview	also	contains	a	customizable
overlay.	The	cmbSDK	camera	overlay	features	buttons	for	zooming,	flashing	and	closing
the	scanner,	and	a	progress	bar	indicating	the	scan	timeout.

To	use	the	legacy	camera	overlay	originally	used	in	cmbSDK	v2.0.x	and	ManateeWorks
SDK,	use	this	property	from	MWOverlay	before	initializ ing	the	readerDevice:

MWOverlay.overlayMode	=	MWOverlay.OverlayMode.OM_LEGACY;

The	customization	of	the	legacy	camera	overlay	is	limited,	so	it	is	recommended	to
use	the	cmbSDK	overlay.

When	using	the	cmbSDK	overlay:

1.	 Copy	the	layout	files	from	the	Resources/layout	directory	into	your	project	and	modify
them.	Use	cmb_scanner_part ial_view.xml	if	scanning	is	started	inside	a	container
(partial	view),	and	use	cmb_scanner_view.xml	if	scanning	is	started	in	full	screen.

t it le:	Cognex	Mobile	Barcode	SDK	for	Android	(v2.2.x)	;	ver:	2.7.x 22	/	47

2.	 Modify	the	layout	according	to	your	needs.	For	example,	you	can	change	the	sizes,
positions	or	color	of	the	views,	remove	views	and	add	your	own	views,	like	an	overlay
image.

CmbSDK	accesses	the	views	it	uses	(zoom,	flash,	close	buttons,	the	view	used	for
drawing	lines	on	the	corners,	and	the	progress	bar)	with	the	android:tag	attribute.	Do
not	change	the	android:tag	attribute,	otherwise	cmbSDK	cannot	recognize	the	views
and	continues	to	function	as	if	they	are	removed.

Both	the	cmbSDK	and	the	legacy	overlay	allow	you	to	change	the	images	used	on	the
zoom	and	flash	buttons	if	your	images	have	the	same	name	as	the	names	cmbSDK
uses.	You	can	find	the	images	and	names	used	in	cmbSDK	in	the	Resources/drawable-
mdpi	and	drawable-hdpi	directories.	While	the	other	resolutions	are	optional,	these	two
directories	must	contain	your	images	with	the	correct	names	so	that	cmbSDK	displays
the	proper	images.

Both	the	cmbSDK	and	the	legacy	overlay	allow	you	to	change	the	color	and	width	of	the
rectangle	that	is	displayed	when	a	barcode	is	detected.

Example:

MWOverlay.locationLineColor	=	Color.YELLOW;
MWOverlay.locationLineWidth	=	6;

	

Target 	Decoding

In	scenario	when	you	have	a	lot	of	barcodes	on	small	surface,	very	close	one	to	another
there	is	new	feature	available	from	cmbSDK	v.2.2.0	called	Target 	(centered)
decoding.	There	is	3	DMCC's	that	are	used	to	configure	this	mode.	Use	them	after	valid
connection	to	reader	device:

(GET|SET)	DECODER.TARGET-DECODING	[ON|OFF]
(GET|SET)	DECODER.CENTERING-WINDOW	[0-100]	[0-100]	[1-100]	[1-100]
(GET|SET)	DECODER.DISPLAY-TARGET	[ON|OFF]

	

GET/SET	DECODER.TARGET-DECODING	command	is	used	to	enable	or	disable	target
decoding.	By	def ault 	OFF.

Example

t it le:	Cognex	Mobile	Barcode	SDK	for	Android	(v2.2.x)	;	ver:	2.7.x 23	/	47

readerDevice.getDataManSystem().sendCommand("SET	DECODER.TARGET-DECODING	ON");

	

DECODER.CENTERING-WINDOW	command	is	used	to	set	(or	get)	the	size	of	the	centering
window.	The	numbers	are	in	percent	of	the	image.	centerX	and	centerY	defines	where
the	middle	of	the	centering	window	should	be	in	the	image.	sizeX	and	sizeY	define	the
size	of	the	centering	window.
If	a	barcode	touches	the	centering	window	it	is	accepted.	The	barcode	doesn’t	have	to	be
contained	in	the	window,	but	just	touch	it.	By	def ault 	[50	50	10	10].

Example

readerDevice.getDataManSystem().sendCommand("SET	DECODER.CENTERING-WINDOW	50	50	5	5");

	

DECODER.DISPLAY-TARGET	command	is	used	to	set	(or	get)	if	the	centering	window
should	be	shown	on	the	SVG	result.	By	def ault 	OFF

Example

readerDevice.getDataManSystem().sendCommand("SET	DECODER.DISPLAY-TARGET	ON");

	

Here	is	example	of	scanning	preview	when	target	decoding	is	enabled:

t it le:	Cognex	Mobile	Barcode	SDK	for	Android	(v2.2.x)	;	ver:	2.7.x 24	/	47

	

Centering	window	(rectangle)	color	and	width	can	be	changed	with:

MWOverlay.targetRectLineColor	=	Color.RED;
MWOverlay.targetRectLineWidth	=	2;

	

Mult icode

t it le:	Cognex	Mobile	Barcode	SDK	for	Android	(v2.2.x)	;	ver:	2.7.x 25	/	47

If	you	want	to	scan	more	barcodes	at	once	and	in	one	scanning	session	you	can	use
Mult i	code	mode.	This	mode	is	available	from	cbmSDK	v.2.2.x.	To	configure	this	mode
4	DMCC's	are	used.	Use	them	after	valid	connection	to	reader	device:

(GET|SET)	MULTICODE.NUM-CODES	[1-255]
(GET|SET)	MULTICODE.PARTIAL-RESULTS	[ON|OFF]
(GET|SET)	DECODER.REREAD-NOT-LAST-N	[0-100]
(GET|SET)	MULTICODE.MAX-NUM-CODES	[1-5]	[1-255]

	

GET/SET	MULTICODE.NUM-CODES	command	is	used	to	set	number	of	codes	reader	must
find	for	a	successful	read	result.	By	def ault 	1.

Example

readerDevice.getDataManSystem().sendCommand("SET	MULTICODE.NUM-CODES	3");

	

GET/SET	MULTICODE.PARTIAL-RESULTS	command	is	used	to	set	how	the	reader	interprets
the	number	of	codes	to	find.	ON	=	reader	will	return	a	successful	read	if	1	or	more	codes
are	found.	OFF	=	reader	will	return	a	successful	read	only	if	number	of	codes	found
equals	MULTICODE.NUM-CODES	value.	By	def ault 	OFF.

Example

readerDevice.getDataManSystem().sendCommand("SET	MULTICODE.PARTIAL-RESULTS	ON");

	

GET/SET	DECODER.REREAD-NOT-LAST-N	command	is	used	to	define	N,	do	not	read	code	if
this	code	was	read	within	the	last	N	reads.	By	def ault 	0,	no	rest rict ion.

Example

readerDevice.getDataManSystem().sendCommand("SET	DECODER.REREAD-NOT-LAST-N	1");

	

GET/SET	MULTICODE.MAX-NUM-CODES	command	is	used	to	set	expected	maximum
number	of	codes	to	find	for	each	symbology	grouping	1	-	5:

t it le:	Cognex	Mobile	Barcode	SDK	for	Android	(v2.2.x)	;	ver:	2.7.x 26	/	47

1.	 DataMatrix
2.	 QR	Code/MaxiCode/AztecCode
3.	 Linear/	Postal/	Stacked
4.	 VeriCode
5.	 DotCode

No	expected	value	for	any	single	symbology	can	exceed	parameter	MULTICODE.NUM-
CODES,	the	total	number	of	codes	to	find.	1st	param	is	symbology	group,	secont	one	is
max	num	of	codes.	By	def ault 	1	f or	all.

Example

readerDevice.getDataManSystem().sendCommand("SET	MULTICODE.MAX-NUM-CODES	1	3");

	

When	multi	code	mode	is	enabled,	in	onReadResultReceived	callback	function	you	can
get	list	of	all	results	from	getSubResult s()	method	from	ReadResults	object.	If	multi
code	mode	is	disabled	this	method	will	return	null.

Parsers

Starting	form	v.2.2.x	we	add	parsers	plugin	in	cmbSDK.	Parsers	help	us	to	extract	decoded
results	into	a	structured	format	(JSON,	Key-Value)	for	search,	sort,	and	validation.	There
are	six	types	of	parsers:

1.	 AAMVA
2.	 GS1
3.	 HIBC
4.	 ISBT128
5.	 IUD
6.	 SCM

Also	there	is	option	to	use	AUTO	parser	type	in	our	SDK	and	we	will	try	to	find	which	one
should	be	used.

Use	setParser()	method	from	ReaderDevice	object	to	set	parser	type	that	you	want	to
use,	or	getParser()	to	get	selected	type.	Set	parser	type	after	valid	connection	to
reader	device.	None	by	def ault .

Example

readerDevice.setParser(ResultParser.AAMVA);

t it le:	Cognex	Mobile	Barcode	SDK	for	Android	(v2.2.x)	;	ver:	2.7.x 27	/	47

	

After	you	enable	needed	parser	type	in	onReadResultReceived	callback	function	from
ReadResult	object	you	can	get	structured	format	from	received	result:

//Returns	parsed	text	in	json	format	from	the	result
results.getResultAt(0).getParsedJSON();
//Returns	parsed	text	from	the	result
results.getResultAt(0).getParsedText();

	

ROI	(region	of	interest)

If	you	want	to	edit/resize	region	of	interest	for	your	scanning	process	while	you	are	using
phone	camera	as	reader	device	you	can	use	(GET|SET)	DECODER.ROI-PERCENT	[X	W	Y	H]
DMC	command	(available	from	cmbSDK	v2.2.x),	where	X	and	Y	represent	the	starting
point	of	the	RoI	in	each	axis,	and	W	H	represent	the	RoI	width	and	height	starting	from	the
starting	point,	with	values	in	percentages.	The	range	of	0-100	is	checked,	as	well	as
minimum	values	of	5	for	width	and	height,	and	the	constraints	implied	between	args,	such
as	the	total	sum	for	a	given	axis	to	be	no	more	than	100.	Use	this	DMCC	after	valid
connection	to	reader	device.

Example

readerDevice.getDataManSystem().sendCommand("SET	DECODER.ROI-PERCENT	10	80	10	80");

	

Advanced	Configurat ion	using	DataMan	Control	Commands

Cognex	scanning	devices	implement	DataMan	Control	Commands	(DMCC)	for	configuring
and	controlling	the	device.	Every	feature	of	the	device	can	be	controlled	using	this	text-
based	language.	The	API	provides	a	method	for	sending	DMCC	commands	to	the	device.
Commands	exist	both	for	setting	and	querying	configuration	properties.

The	Appendix	includes	the	complete	DMCC	reference	for	the	camera	reader.

The	DMCCs	for	MX	mobile	terminals	and	other	supported	devices	can	be	found	in
their	respective	manuals	available	through	Setup	Tool.

https://cmbdn.cognex.com/v2.2.x/knowledge/cognex-mobile-barcode-sdk-for-android/appendix-a-dmcc-for-the-camera-reader/appendix-a-dmcc-for-the-camera-reader

t it le:	Cognex	Mobile	Barcode	SDK	for	Android	(v2.2.x)	;	ver:	2.7.x 28	/	47

The	following	examples	show	different	DMCC	sent	to	the	device	for	more	advanced
configuration.

Examples	

//Change	the	scan	direction	to	omnidirectional	
readerDevice.getDataManSystem().sendCommand("SET	DECODER.1D-SYMBOLORIENTATION	0",	ScannerActivity.th
is);
//Change	live-stream	preview's	scanning	timeout	to	10	seconds	
readerDevice.getDataManSystem().sendCommand("SET	DECODER.MAX-SCAN-TIMEOUT	10",	ScannerActivity.this);

You	can	also	invoke	DMCC	query	commands	and	receive	their	response	in	the
OnResponseReceivedListener.onResponseReceived()	method.	

//Get	the	type	of	device	connected	readerDevice.getDataManSystem().sendCommand("GET	DEVICE.NAME",	ne
w	OnResponseReceivedListener()	{
@Override
public	void	onResponseReceived(DataManSystem	dataManSystem,	DmccResponse	dmccResponse)	{
if	(dmccResponse.getError()	!=	null)	{
//	Unsuccessful
Log.e("DMCC_ERR",	“GET	DEVICE.NAME	failed”,dmccResponse.getError());
}	else	{
//	Success	-	Use	the	following	result	fields:
//int	mResponseId	=	dmccResponse.getResponseId();	//String	mPayLoad	=	dmccResponse.getPayLoad();	//b
yte[]	mBinaryData	=	dmccResponse.getBinaryData();	}
});
}

	

Resett ing	the	Configurat ion

CmbSDK	includes	a	method	for	resetting	the	device	to	its	default	settings	(not	the	factory
defaults).	In	case	of	an	MX	mobile	terminal,	this	is	the	saved	configuration.	In	case	of	a
built-in	camera,	these	are	the	defaults	identified	in	the	Appendix,	where	no	symbologies
are	enabled.	This	method	of	resetting	the	device	is	the	following:	

readerDevice.resetConfig(null);

When	using	an	MX	mobile	terminal,	there	are	three	states	that	we	can	distinguish:

Factory	defaults

https://cmbdn.cognex.com/v2.2.x/knowledge/cognex-mobile-barcode-sdk-for-android/appendix-a-dmcc-for-the-camera-reader

t it le:	Cognex	Mobile	Barcode	SDK	for	Android	(v2.2.x)	;	ver:	2.7.x 29	/	47

Saved	configuration:	when	there	were	different	configurations	set	on	the	device
and	CONFIG.SAVE	DMCC	was	called.
Session	configuration:	when	you	make	changes	on	the	saved	configuration,	the
changes	are	valid	until	the	MX	Mobile	Terminal	is	rebooted.	If	it	is	rebooted,	it	has
the	saved	configuration	state.

You	can	monitor	the	completion	of	this	async	method	using	the	OnResetConfigListener
interface,	which	is	an	optional	parameter.	

public	class	ScannerActivity	extends	Activity	implements	OnResetConfigListener	{
@Override
public	void	onResetConfigCompleted(ReaderDevice	reader,	Throwable	error)	{
if	(error	!=	null)	{	//	Unsuccessful
}	else	{
//	Success	}
}

	

Working	with	Results

When	a	barcode	is	successfully	read,	the	onReadResultReceived	method	creates	and
returns	a	ReadResult	object.	In	case	of	having	multiple	barcodes	successfully	read	on	a
single	image	or	frame,	multiple	ReadResult	objects	are	returned	in	the	ReadResult	object.

The	ReadResult	class	has	properties	describing	the	result	of	a	barcode	read:

is	GoodRead()	(boolean):	te lls	whether	the	read	was	successful	or	not
get 	ReadSt ring()	(String):	the	decoded	barcode	as	a	string
get 	Image()	(Bitmap):	the	image/frame	that	the	decoder	processed
get 	ImageGraphics()	(String):	the	boundary	path	of	the	barcode	as	SVG	data
get 	Xml()	(String):	the	raw	XML	that	the	decoder	returned
get 	Symbology	(Symbology):	the	symbology	type	of	the	barcode.	This	enum	is
defined	in	ReaderDevice.java.

When	a	scanning	ends	with	no	successful	read,	a	ReadResult	is	returned	with	the
goodRead	property	set	to	false.

To	enable	the	image	and	imageGraphics	properties	being	filled	in	the	ReadResult	object,
set	the	corresponding	enableImage()	and/or	enableImageGraphics()	properties	of	the
ReaderDevice	object.

To	access	the	raw	bytes	from	the	scanned	barcode,	you	can	use	the	XML	property.	The
bytes	are	stored	as	a	Base64	String	under	the	"full_string"	tag.	The	example	shows	how
you	can	use	an	XML	parser	to	extract	the	raw	bytes	from	the	XML	property.

t it le:	Cognex	Mobile	Barcode	SDK	for	Android	(v2.2.x)	;	ver:	2.7.x 30	/	47

Example

try	{
				XmlPullParserFactory	factory	=	XmlPullParserFactory.newInstance();
				factory.setNamespaceAware(true);
				XmlPullParser	xpp	=	factory.newPullParser();

				String	tag	=	"";

				//	the	raw	bytes	will	be	stored	in	this	variable
				byte[]	bytes;

				xpp.setInput(new	StringReader(result.getXml()));
				int	eventType	=	xpp.getEventType();
				while	(eventType	!=	XmlPullParser.END_DOCUMENT)	{
								if	(eventType	==	XmlPullParser.START_TAG)	{
												tag	=	xpp.getName();
								}
								else	if	(eventType	==	XmlPullParser.TEXT	&&	tag.equals("full_string"))	{
												String	base64String	=	xpp.getText();
												//	Get	the	bytes	from	the	base64	string	here
												bytes	=	Base64.decode(base64String,	Base64.DEFAULT);
												break;
								}
								else	if	(eventType	==	XmlPullParser.END_TAG	&&	tag.equals("full_string"))	{
												tag	=	"";
												break;
								}
								eventType	=	xpp.next();
				}
}	catch	(Exception	e)	{
				e.printStackTrace();
}

	

Image	Results

The	image	and	SVG	results	are	disabled	by	default,	which	means	that	when	scanning,
the	ReadResults	do	not	contain	any	data	in	the	corresponding	properties.

To	enable	image	results,	invoke	the	enableImage()	method	from	the	ReaderDevice	object:

readerDevice.enableImage(true);

To	enable	SVG	results,	invoke	the	enableImageGraphics()	method	on	ReaderDevice
object:

t it le:	Cognex	Mobile	Barcode	SDK	for	Android	(v2.2.x)	;	ver:	2.7.x 31	/	47

readerDevice.	enableImageGraphics(true);	

	

Handling	Disconnects

If	a	device	disconnects	due	to	low	battery	condition	or	manual	cable	disconnection,	it	can
be	detected	by	the	onConnectionStateChanged()	method	of	the	ReaderDeviceListener
interface.	

Note:	The	onAvailabilityChanged()	method	of	ReaderDeviceListener	is	also	called
when	the	device	becomes	physically	unavailable.	It	means	that	(re)connection	is	not
possible.	Always	check	the	getAvailability()	method	of	the	ReaderDevice	object	before
trying	to	call	the	connect()	method.

Appendix	-	DMCC	for	the	Camera	Reader

Appendix	-	DMCC	for	the	Camera	Reader

The	following	table	lists	the	various	DMCC	commands	supported	by	the	cmbSDK	when
using	the	built-in	camera	for	barcode	scanning.	

Many	of	these	commands	are	also	supported	by	the	MX	mobile	terminals.	Commands
that	are	unique	to	the	camera	reader	are	indicated	as	such	with	an	X	in	the	last
column.

	

GET/SET 	 COMMAND	 PARAMETER(S)	 DESCRIPT ION	 DEFAULT 	VALUE

GET/SET	 BATTERY.CHARGE	 	
Returns	the

current	battery
level	of	the	device
as	a	percentage.

	 BEEP	 	 Plays	the	audible
beep	(tone).	

t it le:	Cognex	Mobile	Barcode	SDK	for	Android	(v2.2.x)	;	ver:	2.7.x 32	/	47

GET/SET	 BEEP.GOOD	 [0-3]	[0-2]	

Sets	the	number
of	beeps	(0-3)
and	the	beep

tone/pitch	(0-	2,
for	low,	medium,

high).	For	the
built-in	camera,

only	a	single	beep
with	no	pitch

control	is
supported.	Thus,

0	1	turns	the	beep
off,	1	1	turns	the

beep	on.	

1	1	(Turn	beep	on)

GET/SET CAMERA.ZOOM 0-2

The	possible
values	for	the	SET
command	are:	0	-

normal	(un-
zoomed),	1	-

zoom	at	level	1,	2
-	zoom	at	level	2.
This	zoom	level	is

used	during
scanning.	When
scanning	ends	it

reset	to	0.

GET/SET CAMERA.ZOOM-
PERCENT

[100-MAX]	[100-
MAX]

Sets/Returns	level
1	zoom	(default

150%	on	Android,
200%	on	iOS),

and	level	2	zoom
(default	300%	on
Android,	400%	on

iOS).
Note:	The	camera

needs	to	be
started	at	least

once	from	sdk	to
have	a	proper
value	for	max
capable	zoom

(MAX)

GET/SET	 CODABAR.CODESIZE	 ON	min	max
OFF	min	max

Accepts	any
length	Codabar.
Sets	min/max

length	of

t it le:	Cognex	Mobile	Barcode	SDK	for	Android	(v2.2.x)	;	ver:	2.7.x 33	/	47

accepted
Codabar.	

GET/SET	 C11.CHKCHAR	 ON	|	OFF	 Turns	Code	11
check	digit	on/off.	

GET/SET	 C11.CHKCHAR-OPTION	 1	2	
Requires	single

checksum.
Requires	double

checksum.	

GET/SET	 C11.CODESIZE	 ON	min	max
OFF	min	max	

Accepts	any
length	Code	11.
Sets	min/max

length	of
accepted	Code

11.	

GET/SET	 C25.CODESIZE	 ON	min	max
OFF	min	max	

Accepts	any
length	Code	25.
Sets	min/max

length	of
accepted	Code

25.	

GET/SET	 C39.ASCII	 ON	|	OFF	
Turns	Code	39
extended	ASCII

on/off.	

GET/SET	 C39.CODESIZE	 ON	min	max
OFF	min	max	

Accepts	any
length	Code	39.
Sets	min/max

length	of
accepted	Code

39.	

GET/SET	 C39.CHKCHAR	 ON	|	OFF	 Turns	Code	39
check	digit	on/off	

GET/SET	 C93.ASCII	 ON	|	OFF	
Turns	Code	93
extended	ASCII

on/off	

GET/SET	 C93.CODESIZE	 ON	min	max
OFF	min	max	

Accepts	any
length	Code	93.
Sets	min/max

length	of
accepted	Code

t it le:	Cognex	Mobile	Barcode	SDK	for	Android	(v2.2.x)	;	ver:	2.7.x 34	/	47

93.	

GET/SET COM.DMCC-HEADER 0	1
Sets	or	gets	the
header	option

used	in	Extended
mode.

GET/SET COM.DMCC-RESPONSE 0	1
DMCC	response

format.	1:
Extended.

0:	Silent	(default)

	 CONFIG.DEFAULT	 	

Resets	most	of	the
camera	API

settings	to	default,
except	those
noted	as	not

resetting	(see
Appendix	B).	To

reset	all	settings,
use

DEVICE.DEFAULT.			

	 CONFIG.SAVE 	

Saves	the	current
configuration	to

non-volatile
memory	(MX-1xxx

only).	Note	that
when	an	MX

powers	off	or
enters	sleep

mode,	the	last
saved

configuration	is
restored	when	the
device	wakes	up.

	 CONFIG.RESTORE 	

Restores	the
saved

configuration	from
non-volatile

memory	(MX-1xxx
only).

GET/SET	 DATA.RESULT-TYPE	
0
1

Specifies	results
to	be	returned

(sum	for	multiple
values):
0	-	None

1	-Text	string

t it le:	Cognex	Mobile	Barcode	SDK	for	Android	(v2.2.x)	;	ver:	2.7.x 35	/	47

2
4
8

result	(default)
2	-	XML	results
4	-	XML	stats

8	-	Scan	image
(see	IMAGE.*
commands)

GET/SET	 DATABAR.EXPANDED	 ON	|	OFF	
Turns	the	DataBar

Expanded
symbology	on/off.	

GET/SET	 DATABAR.LIMITED	 ON	|	OFF	
Turns	the	DataBar

Limited
symbology	on/off.	

GET/SET	 DATABAR.RSS14	 ON	|	OFF	
Turns	the	DataBar
RSS14	symbology

on/off.	

GET/SET	 DATABAR.RSS14STACK	 ON	|	OFF	
Turns	the	DataBar
RSS14	Stacked

symbology	on/off.	

GET/SET	 DECODER.1D-
SYMBOLORIENTATION	

0
1
2
3

Use
omnidirectional
scan	orientation.

Use	horizontal	and
vertical	scan
orientation.

Use	vertical	scan
orientation.

Use	horizontal
scan	orientation.	

GET/SET	 DECODER.EFFORT	 1-5	

Sets	the	effort
level	for	image

analysis/decoding.
The	default	is	2.

Do	not	use	4-5	for
online	scanning.	

GET/SET	 DECODER.MAX-SCAN-
TIMEOUT	 1-120	

Sets	the	timeout
for	the	live-stream
preview.	When	the

timeout	is
reached,

decoding	is
paused;	the	live-
stream	preview

t it le:	Cognex	Mobile	Barcode	SDK	for	Android	(v2.2.x)	;	ver:	2.7.x 36	/	47

will	remain	on-
screen.	

GET DECODER.MAX-
THREADS 	

Returns	the	max
number	of	CPU

threads	supported
by	the	device.

GET/SET DECODER.THREADS-
USED [0-MAX]

Specify	the	max
number	of	CPU
threads	that	the
scanner	can	use

during	the
scanning	process.

	 DEVICE.DEFAULT	 	

Resets	the	device
(including	the
camera	API)

settings	to	default
(see	Appendix	B).	

GET	 DEVICE.FIRMWARE-VER	 	 Gets	the	device
firmware	version.	

GET	 DEVICE.ID	 	

Returns	device	ID
assigned	by

Cognex	to	the
scanning	device.

For	a	built-in
camera,	SDK
returns	53.

GET/SET	 DEVICE.NAME	 	

Returns	the	name
assigned	to	the

device.	By	default,
this	is	“MX-“	plus
the	last	6	digits	of

DEVICE.SERIAL-
NUMBER.	

“MX-“	+	the
last	six	digits

DEVICE.SERIAL-

GET	 DEVICE.SERIAL-
NUMBER	 	

Returns	the	serial
number	of	the

device.	For	a	built-
in	camera,	the
SDK	assigns	a

pseudo-random
number.	

Returns	the	device

t it le:	Cognex	Mobile	Barcode	SDK	for	Android	(v2.2.x)	;	ver:	2.7.x 37	/	47

GET	 DEVICE.TYPE	 	

name	assigned	by
Cognex	to	the

scanning	device.
For	a	built-in
camera,	SDK
returns	“MX-

Mobile”.	

GET/SET	 FOCUS.FOCUSTIME	 0-10	

Sets	the	camera’s
auto-focus	period

(how	often	the
camera	should

attempt	to
refocus).

GET/SET	 I2O5.CHKCHAR	 ON	|	OFF	
Turns	Interleaved
2	of	5	check	digit

on/off.	

GET/SET	 I205.CODESIZE	 ON	min	max
OFF	min	max	

Accepts	any
length	Interleaved

2	of	5.
Sets	min/max

length	of
accepted

Interleaved	2	of
5.	

GET/SET	 IMAGE.FORMAT	
0
1
2

Scanner	returns
image	result	in
bitmap	format.

Scanner	returns
image	result	in

JPEG	format.
Scanner	returns
image	result	in
PNG	format.	

GET/SET	 IMAGE.QUALITY	 10,	15,	20,	...90	 Specifies	JPEG
image	quality.	

GET/SET	 IMAGE.SIZE	
0
1
2
3

Scanner	returns
full	size	image.
Scanner	returns
1/4	size	image.
Scanner	returns
1/16	size	image.
Scanner	returns

t it le:	Cognex	Mobile	Barcode	SDK	for	Android	(v2.2.x)	;	ver:	2.7.x 38	/	47

1/62	size	image.	

GET/SET	 LIGHT.AIMER	 0-1	
Disables/enables
the	aimer	(when

the	scanner
starts).

Default	based	on
cameraMode:	0:

1:	PassiveAimer	and

GET/SET LIGHT.AIMER-TIMEOUT 0-600 Aimer	Timeout	in
seconds.

GET/SET	 LIGHT.INTERNAL-
ENABLE	 ON	|	OFF	

Enables/disables
illumination	(when

the	scanner
starts).	

GET/SET	 MSI.CHKCHAR	 ON	|	OFF	 Turns	MSI	Plessey
check	digit	on/off.	

GET/SET	 MSI.CHKCHAR-OPTION	

0
1
2
3
4
5

Use	mod	10
checksum

Use	mod	10	mod
10	checksum
Use	mod	11

checksum	(IBM
algorithm)

Use	mod	11	mod
10	checksum	(IBM

algorithm)
Use	mod	11

checksum	(NCR
algorithm)

Use	mod	11	mod
10	checksum	(NCR

algorithm)	

GET/SET	 MSI.CODESIZE	 ON	min	max
OFF	min	max	

Accepts	any
length	MSI	Plessey.

Sets	min/max
length	of

accepted	MSI
Plessey.	

GET/SET	 SYMBOL.AZTECCODE	 ON	|	OFF	
Turns	the	Aztec

Code	symbology
on/off.	

t it le:	Cognex	Mobile	Barcode	SDK	for	Android	(v2.2.x)	;	ver:	2.7.x 39	/	47

GET/SET	 SYMBOL.CODABAR	 ON	|	OFF	 Turns	the	Codabar
symbology	on/off.	

GET/SET	 SYMBOL.C11	 ON	|	OFF	 Turns	the	Code	11
symbology	on/off.	

GET/SET	 SYMBOL.C128	 ON	|	OFF	
Turns	the	Code
128	symbology

on/off.	

GET/SET	 SYMBOL.C25	 ON	|	OFF	
Turns	the	Code	25
symbology	on/off

(standard).	

GET/SET	 SYMBOL.C39	 ON	|	OFF	 Turns	the	Code	39
symbology	on/off.	

GET/SET	 SYMBOL.C93	 ON	|	OFF	 Turns	the	Code	93
symbology	on/off.	

GET/SET	 SYMBOL.COOP	 ON	|	OFF	
Turns	the	COOP

symbology	(Code
25	variant)	on/off.	

GET/SET	 SYMBOL.DATAMATRIX	 ON	|	OFF	
Turns	the	Data

Matrix	symbology
on/off.	

GET/SET	 SYMBOL.DATABAR	 ON	|	OFF	

Turns	the	DataBar
Expanded	and

Limited
symbologies

on/off.	

GET/SET	 SYMBOL.DOTCODE	 ON	|	OFF	 Turns	the	DotCode
symbology	on/off.	

GET/SET	 SYMBOL.IATA	 ON	|	OFF	
Turns	the	IATA

symbology	(Code
25	variant)	on/off.	

GET/SET	 SYMBOL.INVERTED	 ON	|	OFF	
Turns	the	Inverted
symbology	(Code
25	variant)	on/off.	

GET/SET	 SYMBOL.ITF14	 ON	|	OFF	
Turns	the	ITF-14

symbology	(Code

t it le:	Cognex	Mobile	Barcode	SDK	for	Android	(v2.2.x)	;	ver:	2.7.x 40	/	47

25	variant)	on/off.	

GET/SET	 SYMBOL.UPC-EAN	 ON	|	OFF	

Turns	the	UPC-A,
UPC-E,	EAN-8,	and

EAN-13
symbologies

on/off.	

GET/SET	 SYMBOL.MATRIX	 ON	|	OFF	
Turns	the	Matrix

symbology	(Code
25	variant)	on/off.	

GET/SET	 SYMBOL.MAXICODE	 ON	|	OFF	
Turns	the
MaxiCode

symbology	on/off.	

GET/SET	 SYMBOL.MSI	 ON	|	OFF	
Turns	the	MSI

Plessey
symbology	on/off.	

GET/SET	 SYMBOL.PDF417	 ON	|	OFF	 Turns	the	PDF417
symbology	on/off.	

GET/SET	 SYMBOL.PLANET	 ON	|	OFF	
Turns	the	PLANET

symbology	on/off.	

GET/SET	 SYMBOL.POSTNET	 ON	|	OFF	 Turns	the	POSTNET
symbology	on/off.	

GET/SET	 SYMBOL.4STATE-IMB	 ON	|	OFF	
Turns	the

Intelligent	Mail
Barcode

symbology	on/off.	

GET/SET	 SYMBOL.4STATE-RMC	 ON	|	OFF	
Turns	the	Royal

Mail	Code
symbology	on/off.	

GET/SET	 SYMBOL.QR	 ON	|	OFF	
Turns	the	QR	and

MicroQR
symbologies

on/off.	

0
1
2

Single	(not
supported)

Presentation	(not
supported)

Manual	(default)

t it le:	Cognex	Mobile	Barcode	SDK	for	Android	(v2.2.x)	;	ver:	2.7.x 41	/	47

GET/SET	 TRIGGER.TYPE	 3
4
5

Burst	(not
supported)

Self	(not
supported)
Continuous	

GET/SET	 UPC-EAN.EAN13	 ON	|	OFF	 Turns	the	EAN-13
symbology	on/off.	

GET/SET	 UPC-EAN.EAN8	 ON	|	OFF	 Turns	the	EAN-8
symbology	on/off.	

GET/SET	 UPC-EAN.UPC-A	 ON	|	OFF	 Turns	the	UPC-A
symbology	on/off.	

GET/SET	 UPC-EAN.UPC-E	 ON	|	OFF	 Turns	the	UPC-E
symbology	on/off.	

GET/SET	 UPC-EAN.UPCE1	 ON	|	OFF	 Turns	the	UPC-E1
symbology	on/off.	

GET/SET	 UPC-EAN.SUPPLEMENT	

0
1
2
3
4

Turns	off	UPC
supplemental

codes	(ignored)
Turns	on	UPC
supplemental

codes	(required)
Required	2	digit
supplemental.

Required	5	digit
supplemental.
Not	required.

GET/SET VIBRATION.GOOD ON	|	OFF
Sets/gets	whether
to	vibrate	when	a

code	is	read
(default	is	ON)

	

Appendix	B	-	Camera	Reader	Defaults

Appendix	B	-	Camera	Reader	Defaults

t it le:	Cognex	Mobile	Barcode	SDK	for	Android	(v2.2.x)	;	ver:	2.7.x 42	/	47

The	following	table	lists	the	defaults	the	SDK	uses	on	startup	for	the	camera	reader.

Note:	At	the	low-level,	the	cmbSDK	supported	devices	can	perform	two	types	of
configuration	resets:	a	device	reset	and	a	config	reset.	A	device	reset	restores	all
configuration	properties	to	their	saved	defaults,	while	a	config	reset	restores	mostly
the	scanning	settings,	leaving	communication	settings	alone.	In	the	table	below,	those
items	that	are	only	reset	by	a	device	reset	are	indicated.

Note:	The	Reader	Device	method	resetConfig()	performs	a	config	reset.	To	perform	a
device	reset,	the	DMCC	command	DEVICE.RESET	would	need	to	be	issued.

	

SETTING DEFAULT 	VALUE
DEVICE
RESET
ONLY?

BEEP.GOOD 1	1	(Turn	beep	on) 	

C11.CHKCHAR OFF 	

C11.CHKCHAR-OPTION 1 	

C39.ASCII OFF 	

C39.CHKCHAR OFF 	

C93.ASCII OFF 	

COM.DMCC-HEADER 1	(Include	Result	ID) Y

COM.DMCC-RESPONSE 0	(Extended) Y

t it le:	Cognex	Mobile	Barcode	SDK	for	Android	(v2.2.x)	;	ver:	2.7.x 43	/	47

DATA.RESULT-TYPE 1 Y

DECODER.1D-
SYMBOLORIENTATION 1 	

DECODER.EFFORT 2 	

DECODER.MAX-SCAN-TIMEOUT 60 	

DEVICE.NAME “MX-“	+	the	last	six	digits	of
DEVICE.SERIAL-NUMBER 	

Symbologies	(SYMBOL.*) OFF	(all	symbologies	are
disabled) 	

Symbology	sub-types
(groups):	DATABAR.EXPANDED

DATABAR.LIMITED
DATABAR.RSS14

DATABAR.RSS14STACK	UPC-
EAN.EAN13

UPC-EAN.EAN8	UPC-EAN.UPC-A
UPC-EAN.UPC-E	UPCE-	AN.UPCE1

ON	OFF	OFF	OFF	ON	ON	ON
ON	OFF 	

FOCUS.FOCUSTIME 3 	

I2O5.CHKCHAR OFF 	

IMAGE.FORMAT 1	(JPEG) 	

IMAGE.QUALITY 50 	

IMAGE.SIZE 1	(1/4	size) 	

Default	based	on
cameraMode:	0:	NoAimer	and

t it le:	Cognex	Mobile	Barcode	SDK	for	Android	(v2.2.x)	;	ver:	2.7.x 44	/	47

LIGHT.AIMER FrontCamera
1:	PassiveAimer	and

ActiveAimer

Y

LIGHT.AIMER-TIMEOUT 60 	

LIGHT.INTERNAL-ENABLE OFF 	
	

	

Setting Default	Value Device	Reset	Only?

Minimum/maximum	code	lengths ON	4	40 	

MSI.CHKCHAR OFF 	

MSI.CHKCHAR-OPTION 0 	

TRIGGER.TYPE 2	(Manual) 	

UPC-EAN.SUPPLEMENT 0 	

	

	

Precaut ions

Precaut ions

Observe	these	precautions	when	installing	the	Cognex	product,	to	reduce	the	risk	of
injury	or	equipment	damage:

t it le:	Cognex	Mobile	Barcode	SDK	for	Android	(v2.2.x)	;	ver:	2.7.x 45	/	47

To	reduce	the	risk	of	damage	or	malfunction	due	to	over-voltage,	line	noise,
electrostatic	discharge	(ESD),	power	surges,	or	other	irregularities	in	the	power	supply,
route	all	cables	and	wires	away	from	high-voltage	power	sources.
Changes	or	modifications	not	expressly	approved	by	the	party	responsible	for
regulatory	compliance	could	void	the	user’s	authority	to	operate	the	equipment.
Cable	shielding	can	be	degraded	or	cables	can	be	damaged	or	wear	out	more	quickly
if	a	service	loop	or	bend	radius	is	tighter	than	10X	the	cable	diameter.	The	bend
radius	must	begin	at	least	six	inches	from	the	connector.
This	device	should	be	used	in	accordance	with	the	instructions	in	this	manual.
All	specifications	are	for	reference	purpose	only	and	may	be	changed	without	notice.	

LEGAL	NOT ICES

Legal	Not ices

The	software	described	in	this	document	is	furnished	under	license,	and	may	be	used	or
copied	only	in	accordance	with	the	terms	of	such	license	and	with	the	inclusion	of	the
copyright	notice	shown	on	this	page.	Neither	the	software,	this	document,	nor	any	copies
thereof	may	be	provided	to,	or	otherwise	made	available	to,	anyone	other	than	the
licensee.	Title	to,	and	ownership	of,	this	software	remains	with	Cognex	Corporation	or	its
licensor.	Cognex	Corporation	assumes	no	responsibility	for	the	use	or	re liability	of	its
software	on	equipment	that	is	not	supplied	by	Cognex	Corporation.	Cognex	Corporation
makes	no	warranties,	e ither	express	or	implied,	regarding	the	described	software,	its
merchantability,	non-infringement	or	its	fitness	for	any	particular	purpose.

The	information	in	this	document	is	subject	to	change	without	notice	and	should	not	be
construed	as	a	commitment	by	Cognex	Corporation.	Cognex	Corporation	is	not
responsible	for	any	errors	that	may	be	present	in	e ither	this	document	or	the	associated
software.

Companies,	names,	and	data	used	in	examples	herein	are	fictitious	unless	otherwise
noted.	No	part	of	this	document	may	be	reproduced	or	transmitted	in	any	form	or	by	any
means,	e lectronic	or	mechanical,	for	any	purpose,	nor	transferred	to	any	other	media	or
language	without	the	written	permission	of	Cognex	Corporation.

Copyright	©	2017.	Cognex	Corporation.	All	Rights	Reserved.
Portions	of	the	hardware	and	software	provided	by	Cognex	may	be	covered	by	one	or
more	U.S.	and	foreign	patents,	as	well	as	pending	U.S.	and	foreign	patents	listed	on	the
Cognex	web	site	at:	https://www.cognex.com/patents.

The	following	are	registered	trademarks	of	Cognex	Corporation:

Cognex,	2DMAX,	Advantage,	AlignPlus,	Assemblyplus,	Check	it 	with	Checker,
Checker,	Cognex	Vision	f or	Indust ry,	Cognex	VSOC,	CVL,	DataMan,
DisplayInspect ,	DVT,	EasyBuilder,	Hotbars,	IDMax,	In-Sight ,	Laser	Killer,	MVS-
8000,	OmniView,	PatFind,	PatFlex,	Pat Inspect ,	PatMax,	PatQuick,
SensorView,	SmartView,	SmartAdvisor,	SmartLearn,	Ult raLight ,	Vision
Solut ions,	VisionPro,	VisionView

https://www.cognex.com/patents

t it le:	Cognex	Mobile	Barcode	SDK	for	Android	(v2.2.x)	;	ver:	2.7.x 46	/	47

The	following	are	trademarks	of	Cognex	Corporation:

The	Cognex	logo,	1DMax,	3D-Locate,	3DMax,	BGAII,	CheckPoint ,	Cognex
VSoC,	CVC-1000,	FFD,	iLearn,	In-Sight 	(design	insignia	with	cross-hairs),	In-
Sight 	2000,	InspectEdge,	Inspect ion	Designer,	MVS,	NotchMax,	OCRMax,
PatMax	RedLine,	Proof Read,	SmartSync,	Prof ilePlus,	SmartDisplay,
SmartSystem,	SMD4,	VisiFlex,	Xpand

Other	product	and	company	trademarks	identified	herein	are	the	trademarks	of	their
respective	owners.

Migrat ion	from	mwSDK	to	cmbSDK

Difference	between	mwSDK	and	cmbSDK

The	Manatee	Works	Barcode	Scanner	SDK	has	been	fully	integrated	into	the	Cognex
Mobile	Barcode	SDK	(cmbSDK).	Therefore,	we	are	shifting	our	focus	to	the	cmbSDK.

The	good	news	is	that	the	cmbSDK	is	backward	compatible	with	the	MW	SDK.	The
cmbSDK	simply	adds	a	higher-level	API	to	the	scanning	methods	that	utilize	the	camera
of	a	smartphone	or	tablet.	Or,	you	can	continue	to	use	the	lower-level	methods	you	have
become	familiar	with	in	the	Manatee	Works	SDK.	Your	account,	login,	license(s),	and
key(s)	remain	the	same.	If	you	do	decide	to	program	to	the	higher-level	API,	you	will
have	the	added	benefit	of	your	app(s)	supporting	the	Cognex	MX	Series	mobile	barcode
readers,	and	MX	Series	mobile	terminals,	with	a	single	code	base.

Remove	mwSDK

To	avoid	collision	between	mwSDK	and	cbmSDK	we	need	to	remove	old	library
(libBarcodeScannerLib.so)	files	for	all	architectures	and	mwbscanner.jar	file .

Please	open	libs	folder	inside	your	project	({project_name}/app/libs)	and	remove
mwbscanner.jar	file 	if	there	is	any.

Next	open	jniLibs	folder	inside	your	project	({project_name}/app/src/main/jniLibs)	and
remove	all	libBarcodeScannerLib.so	files	inside	all	sub	folders	(arm64-v8a,	armeabi-
v7a,	x86,	x86_64).

Add	cmbSDK

Next	step	is	to	add	cmbsdklib-release.aar	file 	and	use	in	your	project	as	dependency.
Please	navigate	to	this	url	to	check	step	by	step	how	to	integrate	cmbSDK	inside	your

https://cmbdn.cognex.com/v2.2.x/knowledge/cognex-mobile-barcode-sdk-for-android/using-cmbsdk/installing-cmbsdk

t it le:	Cognex	Mobile	Barcode	SDK	for	Android	(v2.2.x)	;	ver:	2.7.x 47	/	47

project.

After	that	please	remove	all	API's	and	methods	that	you	are	using	from	mwSDK,	and
follow	our	guide	from	here	to	see	how	to	implement	cmbSDK	in	your	project.

Here	are	some	of	the	main	differences	in	code	between	mwSDK	and	cmbSDK:

1.	 Init ialize,	create	and	connect 	reader	device
-	Using	mwSDK	we	don't	have	that	ReaderDevice	object	and	we	use	API	methods
from	BarcodeScanner	object	to	initialize	decoder	before	starting	the	scanner
process:	set	active	codes,	set	scanning	rect,	set	decoder	level,	register	sdk,	etc.
When	we	use	cmbSDK	all	this	things	are	done	in	code	behind	with	default	values
when	we	create	ReaderDevice	object.	Here	some	of	the	settings	can	be	set	in
constructor	as	input	parameter	and	another	one	can	be	set/changed	after	we	create
and	connect	to	reader	device.	Using	cmbSDK	not	only	creating	reader	device	in
enough	to	start	scanning	process,	we	also	need	to	connect	to	reader	device	and	set
necessary	callbacks	that	will	handle	response	from	connection	state	changed,
availability,	result	received,	etc.
	

2.	 Start 	scanning	process
-	With	mwSDK	after	we	initialize	decoder	we	are	ready	to	start	the	scanning.	There
are	two	different	methods	for	starting	the	scanner.One	for	partial	view	(where	we	can
set	size	as	input	parameter)	and	one	for	full	screen.	Also	we	can	choose	if	we	want
this	methods	to	return	object	result	or	we	will	expect	result	in	a	callback	function.
Using	cmbSDK	there	is	only	one	method	to	start	the	scanning	process	and	comes
from	ReaderDevice	object	(readerDevice.startScanning()).	We	can't	start	scanning
process	if	we	don't	have	valid	connection	to	reader	device.	Here	if	we	want	to	use	full
screen	mode	when	we	create	reader	device	in	constructor	will	send	null	as	input
parameter	for	previewContainer,	or	if	we	want	to	use	partial	view	we	must	to	create
that	container	in	our	layout		and	send	as	input	parameter.	Result	from	scanning
process	will	be	received	in	onReadResultReceived	callback	function.
	

3.	 Result 	received
-	If	we	have	successful	read	or	we	stop	the	scanning	process	and	have	no	read,	result
object	will	be	received	in	onReadResultReceived.	In	cmbSDK	result	object	is	more
extended	than	in	mwSDK.	From	that	object	we	can	read	our	barcode	result,
symbology,	image	from	last	frame,	SVG	result,	etc.
	

https://cmbdn.cognex.com/v2.2.x/knowledge/cognex-mobile-barcode-sdk-for-android/using-cmbsdk/setting-up-an-application-to-use-cmbsdk-for-android

