
t it le:	Nativescript	(v2.2.x)	;	ver:	2.7.x 1	/	14

Nativescript	(v2.2.x)

Changelog

Version	1.0.0

Initial	re lease
Using	cbmSDK	v2.2.1	for	android	and	v2.2.3	for	iOS

	

Install	cmbSDK	Nat ivescript 	plugin	in	your	applicat ion

From	the	command	prompt	go	to	your	app's	root	folder.

You	can	use	our	plugin	form	npm	(recommended)	or	you	can	download	from	here	and	use
from	local	path.

tns	plugin	add	cmbsdk-nativescript	#	or	local	path

	

Implement	cmbSDK	Nat ivescript 	plugin	in	your	applicat ion

The	best	way	to	explore	the	usage	of	the	plugin	is	to	check	our	demo	app.	You	can
download	our	demo	app	from	here.

Once	you	download	navigate	to	demo	app	root	folder	and	run	demo	application:

cd	cmbSDK_Nativescript/demo
tns	run	android	#	or	ios

In	short	to	use	our	plugin	in	your	project	here	are	the	steps:

Import 	the	plugin

https://cmbdn.cognex.com/files/download_latest/cmbSDK_Nativescript
https://cmbdn.cognex.com/files/download_latest/cmbSDK_Nativescript

t it le:	Nativescript	(v2.2.x)	;	ver:	2.7.x 2	/	14

Typescript

import	{	CMBReader,	CMBReaderConstants	}	from	'cmbsdk-nativescript';

Set 	necessary	callbacks	and	configure	reader	device

Open	home-view-model.t s	from	demo	app	to	check	this	code.	All	code	in	our	demo
app	is	with	short	description.

Start 	scanning	process

this.cmbReader.startScanning()

	

License	Key(s)

IMPORTANT

Usage	of	the	cmbSDK	nativescript	plugin	with	an	MX	device	is	free,	but	if	you	want	to
utilize	the	CAMERA	DEVICE	(scan	with	the	smartphone	camera),	you	need	to	obtain	a
license	from	CMBDN.

he	Reader	still	works	without	a	license,	but	results	are	randomly	masked	with	*	chars.

It's	free	to	register	and	you	can	obtain	a	30	day	trial	license	key.

Once	the	key	is	obtained	there	is	two	ways	to	use	in	your	application.

First	way	is	to	include	your	key	from	code	using	registerSDK	API	method.	You	need
to	call	this	method	bef ore	loadScanner.

this.cmbReader.registerSDK("SKD_KEY");

Second	way	is	to	include	your	key	in	AndroidManifest.xml	file 	for	Android

#typescript-tab-1
https://cmbdn.cognex.com/

t it le:	Nativescript	(v2.2.x)	;	ver:	2.7.x 3	/	14

and	Info.plist	file 	for	iOS

t it le:	Nativescript	(v2.2.x)	;	ver:	2.7.x 4	/	14

API

Methods

(Promise)	loadScanner(deviceType:	number)

/*			@return	resolve	promise

To	get	a	scanner	up	and	running,	the	first	thing	to	do,	is	to	call	the	loadScanner()
method.	It	expects	a	device	type	as	input	parameter.	This	method	does	not	connect	to
the	Reader	Device.	We	need	to	call	connect ()	in	the	promise	to	actually	connect	to	the
Reader	Device

this.cmbReader.loadScanner(CMBReaderConstants.DEVICE_TYPE.MXReader)
				.then(result	=>	{
								this.cmbReader.connect()
												.then(result	=>	{
																this.updateUIByConnectionState(CMBReaderConstants.CONNECTION_STATE.Connected);
												})

t it le:	Nativescript	(v2.2.x)	;	ver:	2.7.x 5	/	14

												.catch(err	=>	{
																console.log(err);
																this.updateUIByConnectionState(CMBReaderConstants.CONNECTION_STATE.Disconnected);
												});
								});
				});

	

(Promise)	connect()

/*			@return
						resolve	promise	if	connection	succeded
						reject	promise	with	error	message	if	there	is	some	problem	while	connecting
*/

The	result	from	the	connect()	method	is	returned	as	a	Promise	and	it	will	return	the	result
of	the	connection	attempt:

this.cmbReader.connect()
				.then(result	=>	{
								this.updateUIByConnectionState(CMBReaderConstants.CONNECTION_STATE.Connected);
				})
				.catch(err	=>	{
								console.log(err);
								this.updateUIByConnectionState(CMBReaderConstants.CONNECTION_STATE.Disconnected);
				});

There	is	Event	Listener	for	the	connection	status	of	the	ReaderDevice,	namely	the
CMBReaderConstants.EVENTS.Connect ionStateChanged	event	which	is
explained	in	more	detail	below.

(Promise)	disconnect()

/*			@return
						resolve	promise	if	disconnection	succeded
						reject	promise	with	error	message	if	there	is	some	problem	while	disconnecting
*/

Just	as	there	is	connect (),	there	is	a	disconnect ()	method	that	does	the	opossite	of
connect ()	:

t it le:	Nativescript	(v2.2.x)	;	ver:	2.7.x 6	/	14

this.cmbReader.disconnect();

Similarly	to	connect (),	disconnect ()	too	triggers	the
CMBReaderConstants.EVENTS.Connect ionStateChanged	event.

(Promise)	getConnect ionState()

/*			@return
						resolve	promise	with	CMBReaderConstants.CONNECTION_STATE	value	of	the	reader's	current	connect
ionState
						reject	promise	with	error	message	if	there	is	some	problem	while	we	check	current	connection	s
tate
*/	

	

(Promise)	startScanning()	/	(Promise)	stopScanning()

/*			@return
						resolve	promise	if	scanning	is	started/stopped
						reject	promise	with	error	message	if	there	is	some	problem	while	start/stop	scanning	process	e
x:	if	readerDevice	not	initialized)
*/

startScanning()	and	stopScanning()	methods	triggers
CMBReaderConstants.EVENTS.ScanningStateChanged	event	that	return	true	if
scanner	is	started	and	false	if	is	stopped.

After	starting	the	scanner	and	scanning	a	barcode,	the	scan	result	triggers	the
CMBReaderConstants.EVENTS.ReadResultReceived	event.

If	you	need	to	get	the	current	connection	state,	getConnect ionState()	can	be	used

this.cmbReader.getConnectionState()
				.then(connectionState	=>	{
								if	(connectionState	==	CMBReaderConstants.CONNECTION_STATE.Connected)	{
										//	reader	is	connected
								}
				})
				.catch(err	=>	{
								console.log(err);
				});

t it le:	Nativescript	(v2.2.x)	;	ver:	2.7.x 7	/	14

	

(Promise)	setSymbologyEnabled(symbology:	number,	enable:
boolean)

/*			@return
						resolve	promise	with	result	true	if	symbology	is	enabled	or	false	if	symbology	is	disabled
						reject	promise	with	error	message	if	there	is	some	problem	while	we	try	to	enable	the	symbolog
y
*/

Once	there	is	a	connection	to	the	Reader,	we	can	enable	symbologies	by	calling
setSymbologyEnabled().	It	expects	a	int	value	of	the	symbol	to	be	enabled	and
boolean	for	ON/OFF.

this.cmbReader.setSymbologyEnabled(CMBReaderConstants.SYMBOLOGY.DataMatrix,	true)
				.then(result	=>	{
								if	(result	==	true)
												console.log("DataMatrix	enabled");
								else
												console.log("DataMatrix	NOT	enabled");
				})
				.catch(err	=>	{
								console.log(err);
				});

	

(Promise)	isSymbologyEnabled(symbology:	number)

/*			@return
						resolve	promise	with	result	true	if	symbology	is	enabled	or	false	if	symbology	is	disabled
						reject	promise	with	error	message	if	there	is	some	problem	while	we	check	symbology	status
*/

To	check	if	we	have	a	symbology	enabled,	we	use	isSymbologyEnabled().

this.cmbReader.isSymbologyEnabled(CMBReaderConstants.SYMBOLOGY.DataMatrix)
				.then(result	=>	{
								if	(result	==	true)
												console.log("DataMatrix	enabled");
								else

t it le:	Nativescript	(v2.2.x)	;	ver:	2.7.x 8	/	14

												console.log("DataMatrix	NOT	enabled");
				})
				.catch(err	=>	{
								console.log(err);
				});

	

(Promise)	setLightsOn(on:	boolean)	/	(Promise)	isLightsOn()

/*			@return
						resolve	promise	with	result	true	if	light	is	enabled	or	false	if	light	is	disabled
						reject	promise	with	error	message	if	there	is	some	problem	while	we	check	light	status
*/

If	we	want	to	enable	the	flash	by	default	we	can	use	setLightsOn()	and	to	check	if	it	is
enabled	with	isLightsOn()

(void)	setCameraMode(cameraMode:	number)

To	set	how	the	camera	will	behave	when	we	use	CAMERA	device	as	a	barcode	Reader
we	use:

this.cmbReader.setCameraMode(CMBReaderConstants.CAMERA_MODE.NoAimer);
/**
Use	camera	with	no	aimer.	Preview	is	on,	illumination	is	available.
CMBReader.CAMERA_MODE.NoAimer	=	0,

Use	camera	with	a	basic	aimer	(e.g.,	StingRay).	Preview	is	off,	illumination	is	not	available.
CMBReader.CAMERA_MODE.PassiveAimer	=	1,

Use	camera	with	an	active	aimer	(e.g.,	MX-100).	Preview	is	off,	illumination	is	available.
CMBReader.CAMERA_MODE.ActiveAimer	=	2,

Use	mobile	device	front	camera.	Preview	is	on,	illumination	is	not	available.
CMBReader.CAMERA_MODE.FrontCamera	=	3
*/

Note:	It	should	be	called	BEFORE	we	call	loadScanner()	for	it	to	take	effect.	Calling	it
after	the	scanner	was	loaded	won't	do	anything	if	the	scanner	is	loaded.

(void)	setPreviewOptions(previewOptions:	number)

t it le:	Nativescript	(v2.2.x)	;	ver:	2.7.x 9	/	14

Set	the	overrided	preview	options.
This	function	expects	an	integer	that	is	a	result	of	the	ORed	result	of	all	the	preview
options	that	we	want	enabled.
Doesn't	return	a	value.
Should	be	called	BEFORE	loadScanner()	(same	as	cameraMode())\

Example:

this.cmbReader.setPreviewOptions(CMBReaderConstants.CAMERA_PREVIEW_OPTION.NoZoomBtn	|	CMBReaderConst
ants.CAMERA_PREVIEW_OPTION.NoIllumBtn);

	

(void)	setPreviewOverlayMode(previewOverlayMode:	number)

Set	the	camera	overlay	mode.	You	need	to	do	it	before	loadScanner	is	called,	otherwise
it	will	not	work	properly	ONLY	AVAILABLE	ON	MX-Mobile

Example:

this.cmbReader.setPreviewOverlayMode(CMBReaderConstants.OVERLAY_MODE.OM_CMB);

	

(void)	setPreviewContainerPosit ionAndSize(x:	number,	y:	number,
w:	number,	h:	number)

/*
		@params	x,	y,	w,	h
								x,y		:	top	left	position
								w,h		:	width	and	height	of	the	rectangular	in	precentages	of	the	full	container
*/

Used	only	with	the	phone	camera,	sets	the	size	and	position	of	the	camera	preview
screen.

Example:

this.cmbReader.setPreviewContainerPositionAndSize(0,0,100,50);

t it le:	Nativescript	(v2.2.x)	;	ver:	2.7.x 10	/	14

//will	set	the	preview	to	0,0	and	100%	width	50%	height

	

(void)	setPreviewContainerFullScreen()

Used	only	with	the	phone	camera,	sets	the	camera	preview	to	start	in	full	screen	instead
of	partial	view.

Example:

this.cmbReader.setPreviewContainerFullScreen();
//will	set	the	camera	preview	to	start	in	full	screen	when	startScanning	is	called

	

(Promise)	enableImage(arg:	boolean)	/	(Promise)
enableImageGraphics(arg:	boolean)

/*			@return
						resolve	promise	with	result	true	if	image	or	imageGrapics	is	enabled
						reject	promise	with	error	message	if	there	is	some	problem	while	enabling	image	result
*/	

To	enable	/	disable	result	type	returned	as	image	use

this.cmbReader.enableImage(true);

Same	for	enableImageGrapics().

this.cmbReader.enableImageGraphics(false);

	

(Promise)	getDeviceBatteryLevel()

t it le:	Nativescript	(v2.2.x)	;	ver:	2.7.x 11	/	14

/*			@return
						resolve	promise	with	the	charge	in	percentage
						reject	promise	with	error	message	if	there	is	some	problem	while	checking	battery	level
*/	

Helper	method	to	show	the	battery	levels	of	the	connected	device.	Use	it	like	this:

this.cmbReader.getDeviceBatteryLevel()
				.then(result	=>	{
								console.log(result);
				})
				.catch(err	=>	{
								console.log(err);
				});

	

	

(Promise)	resetConfig()

/*			@return
						resolve	promise	if	reset	is	successful
						reject	promise	with	error	message	if	there	is	some	problem	while	resetting	configuration
*/	

To	reset	the	configuration	options	we	can	use	resetConf ig

this.cmbReader.resetConfig()
				.then(result	=>	{
				})
				.catch(err	=>	{
								console.log(err);
				});

	

(void)	setParser(parserType:	number)

Set	cmbScanner	result	parser.	This	API	must	be	called	when	readerDevice	is	loaded	and

t it le:	Nativescript	(v2.2.x)	;	ver:	2.7.x 12	/	14

connected

Example:

this.cmbReader.setParser(CMBReaderConstants.PARSERS.AUTO);

	

(Promise)	sendCommand(commandString:	string)

/*			@return
						resolve	promise	with	result	depends	of	commandString
						reject	promise	with	error	message	if	there	is	some	problem	while	executing	command
*/	

Finally,	all	the	methods	can	be	replaced	with	sending	DMCC	strings	to	the	READER	device.
For	that	we	can	use	our	API	method	sendCommand.	It	can	be	used	to	control	the
Reader	completely	with	command	strings.\	More	on	the	command	strings	can	be	found
here	or	here

Use	it	like	this:

this.cmbReader.sendCommand("SET	SYMBOL.POSTNET	OFF")
				.then(result	=>	{
								console.log(result);
				})
				.catch(err	=>	{
								console.log(err);
				});

	

Events

Events	list

The	Nativescript	cmbReader	object	extends	Observable	object	and	have	events	that	can
be	listened	and	used	in	application.	These	events	should	be	set	before	loadScanner	is
called.

https://cmbdn.cognex.com/v2.2.x/knowledge/-cognex-mobile-barcode-sdk-for-ios/appendix-a-dmcc-for-the-camera-reader
https://cmbdn.cognex.com/v2.2.x/knowledge/cognex-mobile-barcode-sdk-for-android/appendix-dmcc-for-the-camera-reader

t it le:	Nativescript	(v2.2.x)	;	ver:	2.7.x 13	/	14

this.cmbReader.on(CMBReaderConstants.EVENTS.ConnectionStateChanged,	(args:	any)	=>	{

});

Here	are	list	of	the	events:

CMBReaderConstants.EVENTS.ReadResultReceived
CMBReaderConstants.EVENTS.AvailabilityChanged
CMBReaderConstants.EVENTS.ConnectionStateChanged
CMBReaderConstants.EVENTS.ScanningStateChanged

	

ReadResultReceived

This	event	is	triggered	whenever	a	scan	result	is	received.	The	result	is	a	JSON	object
with	this	structure:

/**
*	 results	-	json	array.	If	you	use	multicode	mode	here	you	will	find	main	result(set	of	all	pa
rtial	results	together	merged	in	one	readString)	and	all	other	partial	results
*	 subResults	-	json	array	of	all	partial	results	(if	single	code	mode	is	uset	this	array	will	
be	empty)
*	 xml	-	string	representation	of	complete	result	from	reader	device	in	xml	format

*	 results	and	subResults	are	json	arrays	that	contains	items	with	this	structure:
*			symbology	-	integer	representation	of	the	barcode	symbology	detected
*			symbologyString	-	string	representation	of	the	barcode	symbology	detected
*			readString	-	string	representation	of	barcode
*	 goodRead	-	bool	that	indicate	if	barcode	is	successful	scanned
*	 xml	-	string	representation	of	partial	result	in	xml	format
*	 imageGraphics	-	string	that	represent	svg	image	from	last	detected	frame
*	 image	-	base64	string	that	contain	image	from	last	detected	frame
*	 parsedText	-	string	that	represent	parsed	text	from	the	result
*	 parsedJSON	-	string	that	represent	parsed	text	in	json	format	from	the	result
*	 isGS1	-	bool	that	indicate	if	barcode	is	GS1	or	not
*/

	

AvailabilityChanged

This	event	is	triggered	when	the	availability	of	the	ReaderDevice	changes	(example:
when	the	MX	Mobile	Terminal	has	connected	or	disconnected	the	cable,	or	has	turned	on
or	off).	The	result	is	an	number	containing	the	availability	information.

t it le:	Nativescript	(v2.2.x)	;	ver:	2.7.x 14	/	14

Connect ionStateChanged

This	event	is	triggered	when	the	connection	state	of	the	ReaderDevice	changes.	The
result	is	an	number	containing	the	connection	information.

ScanningStateChanged

This	event	is	triggered	when	the	scanner	state	of	the	ReaderDevice	changes.	The	result
is	a	boolean	that	is	true	if	the	scanning	started,	or	false	if	it	stopped.

