
1 / 10

Nativescript (v2.2.x)

Changelog

Version 1.0.0

Initial release
Using cbmSDK v2.2.1 for android and v2.2.3 for iOS

 

Install cmbSDK Nativescript plugin in your application

From the command prompt go to your app's root folder.

You can use our plugin form npm (recommended) or you can download from here and use from local path.

tns plugin add cmbsdk-nativescript # or local path

 

Implement cmbSDK Nativescript plugin in your application

The best way to explore the usage of the plugin is to check our demo app. You can download our demo app from here.

Once you download navigate to demo app root folder and run demo application:

cd cmbSDK_Nativescript/demo 
tns run android # or ios

In short to use our plugin in your project here are the steps:

Import the plugin

Typescript

import { CMBReader, CMBReaderConstants } from 'cmbsdk-nativescript';

Set necessary callbacks and configure reader device

Open home-view-model.ts from demo app to check this code. All code in our demo app is with short description.

Start scanning process

this.cmbReader.startScanning()

https://cmbdn.cognex.com/files/download_latest/cmbSDK_Nativescript
https://cmbdn.cognex.com/files/download_latest/cmbSDK_Nativescript


2 / 10

 

License Key(s)

IMPORTANT

Usage of the cmbSDK nativescript plugin with an MX device is free, but if you want to utilize the CAMERA DEVICE (scan with the smartphone
camera), you need to obtain a license from CMBDN.

he Reader still works without a license, but results are randomly masked with * chars.

It's free to register and you can obtain a 30 day trial license key.

Once the key is obtained there is two ways to use in your application.

First way is to include your key from code using registerSDK API method. You need to call this method before loadScanner.

this.cmbReader.registerSDK("SKD_KEY");

Second way is to include your key in AndroidManifest.xml file for Android 

and Info.plist file for iOS 

https://cmbdn.cognex.com/


3 / 10

API

Methods

(Promise) loadScanner(deviceType: number)

/*   @return resolve promise

To get a scanner up and running, the first thing to do, is to call the loadScanner() method. It expects a device type as input parameter. This
method does not connect to the Reader Device. We need to call connect() in the promise to actually connect to the Reader Device

this.cmbReader.loadScanner(CMBReaderConstants.DEVICE_TYPE.MXReader) 
    .then(result => { 
        this.cmbReader.connect() 
            .then(result => { 
                this.updateUIByConnectionState(CMBReaderConstants.CONNECTION_STATE.Connected); 
            }) 
            .catch(err => { 
                console.log(err); 
                this.updateUIByConnectionState(CMBReaderConstants.CONNECTION_STATE.Disconnected); 
            }); 
        }); 
    });

 

(Promise) connect()

/*   @return 
      resolve promise if connection succeded 



4 / 10

      reject promise with error message if there is some problem while connecting 
*/

The result from the connect() method is returned as a Promise and it will return the result of the connection attempt:

this.cmbReader.connect() 
    .then(result => { 
        this.updateUIByConnectionState(CMBReaderConstants.CONNECTION_STATE.Connected); 
    }) 
    .catch(err => { 
        console.log(err); 
        this.updateUIByConnectionState(CMBReaderConstants.CONNECTION_STATE.Disconnected); 
    });

There is Event Listener for the connection status of the ReaderDevice, namely the
CMBReaderConstants.EVENTS.ConnectionStateChanged event which is explained in more detail below.

(Promise) disconnect()

/*   @return 
      resolve promise if disconnection succeded 
      reject promise with error message if there is some problem while disconnecting 
*/

Just as there is connect(), there is a disconnect() method that does the opossite of connect() :

this.cmbReader.disconnect();

Similarly to connect(), disconnect() too triggers the CMBReaderConstants.EVENTS.ConnectionStateChanged event.

(Promise) getConnectionState()

/*   @return 
      resolve promise with CMBReaderConstants.CONNECTION_STATE value of the reader's current connectionState 
      reject promise with error message if there is some problem while we check current connection state 
*/ 

 

(Promise) startScanning() / (Promise) stopScanning()

/*   @return 
      resolve promise if scanning is started/stopped 
      reject promise with error message if there is some problem while start/stop scanning process ex: if readerDevice not 
*/

startScanning() and stopScanning() methods triggers CMBReaderConstants.EVENTS.ScanningStateChanged event that return true if
scanner is started and false if is stopped.

After starting the scanner and scanning a barcode, the scan result triggers the CMBReaderConstants.EVENTS.ReadResultReceived event.

If you need to get the current connection state, getConnectionState() can be used



5 / 10

this.cmbReader.getConnectionState() 
    .then(connectionState => { 
        if (connectionState == CMBReaderConstants.CONNECTION_STATE.Connected) { 
          // reader is connected 
        } 
    }) 
    .catch(err => { 
        console.log(err); 
    });

 

(Promise) setSymbologyEnabled(symbology: number, enable: boolean)

/*   @return 
      resolve promise with result true if symbology is enabled or false if symbology is disabled 
      reject promise with error message if there is some problem while we try to enable the symbology 
*/

Once there is a connection to the Reader, we can enable symbologies by calling setSymbologyEnabled(). It expects a int value of the
symbol to be enabled and boolean for ON/OFF.

this.cmbReader.setSymbologyEnabled(CMBReaderConstants.SYMBOLOGY.DataMatrix, true) 
    .then(result => { 
        if (result == true) 
            console.log("DataMatrix enabled"); 
        else 
            console.log("DataMatrix NOT enabled"); 
    }) 
    .catch(err => { 
        console.log(err); 
    });

 

(Promise) isSymbologyEnabled(symbology: number)

/*   @return 
      resolve promise with result true if symbology is enabled or false if symbology is disabled 
      reject promise with error message if there is some problem while we check symbology status 
*/

To check if we have a symbology enabled, we use isSymbologyEnabled().

this.cmbReader.isSymbologyEnabled(CMBReaderConstants.SYMBOLOGY.DataMatrix) 
    .then(result => { 
        if (result == true) 
            console.log("DataMatrix enabled"); 
        else 
            console.log("DataMatrix NOT enabled"); 
    }) 
    .catch(err => { 
        console.log(err); 
    });

 



6 / 10

(Promise) setLightsOn(on: boolean) / (Promise) isLightsOn()

/*   @return 
      resolve promise with result true if light is enabled or false if light is disabled 
      reject promise with error message if there is some problem while we check light status 
*/

If we want to enable the flash by default we can use setLightsOn() and to check if it is enabled with isLightsOn()

(void) setCameraMode(cameraMode: number)

To set how the camera will behave when we use CAMERA device as a barcode Reader we use:

this.cmbReader.setCameraMode(CMBReaderConstants.CAMERA_MODE.NoAimer); 
/** 
Use camera with no aimer. Preview is on, illumination is available. 
CMBReader.CAMERA_MODE.NoAimer = 0, 
 
Use camera with a basic aimer (e.g., StingRay). Preview is off, illumination is not available. 
CMBReader.CAMERA_MODE.PassiveAimer = 1, 
 
Use camera with an active aimer (e.g., MX-100). Preview is off, illumination is available. 
CMBReader.CAMERA_MODE.ActiveAimer = 2, 
 
Use mobile device front camera. Preview is on, illumination is not available. 
CMBReader.CAMERA_MODE.FrontCamera = 3 
*/

Note: It should be called BEFORE we call loadScanner() for it to take effect. Calling it after the scanner was loaded won't do anything if the
scanner is loaded.

(void) setPreviewOptions(previewOptions: number)

Set the overrided preview options. 
This function expects an integer that is a result of the ORed result of all the preview options that we want enabled. 
Doesn't return a value. 
Should be called BEFORE loadScanner() (same as cameraMode())\

Example:

this.cmbReader.setPreviewOptions(CMBReaderConstants.CAMERA_PREVIEW_OPTION.NoZoomBtn | CMBReaderConstants.CAMERA_PREVIEW_OPT

 

(void) setPreviewOverlayMode(previewOverlayMode: number)

Set the camera overlay mode. You need to do it before loadScanner is called, otherwise it will not work properly ONLY AVAILABLE ON MX-
Mobile

Example:

this.cmbReader.setPreviewOverlayMode(CMBReaderConstants.OVERLAY_MODE.OM_CMB);



7 / 10

 

(void) setPreviewContainerPositionAndSize(x: number, y: number, w: number, h: number)

/* 
  @params x, y, w, h 
        x,y  : top left position 
        w,h  : width and height of the rectangular in precentages of the full container 
*/

Used only with the phone camera, sets the size and position of the camera preview screen.

Example:

this.cmbReader.setPreviewContainerPositionAndSize(0,0,100,50); 
//will set the preview to 0,0 and 100% width 50% height

 

(void) setPreviewContainerFullScreen()

Used only with the phone camera, sets the camera preview to start in full screen instead of partial view.

Example:

this.cmbReader.setPreviewContainerFullScreen(); 
//will set the camera preview to start in full screen when startScanning is called

 

(Promise) enableImage(arg: boolean) / (Promise) enableImageGraphics(arg: boolean)

/*   @return 
      resolve promise with result true if image or imageGrapics is enabled 
      reject promise with error message if there is some problem while enabling image result 
*/ 

To enable / disable result type returned as image use

this.cmbReader.enableImage(true);

Same for enableImageGrapics().

this.cmbReader.enableImageGraphics(false);

 



8 / 10

(Promise) getDeviceBatteryLevel()

/*   @return 
      resolve promise with the charge in percentage 
      reject promise with error message if there is some problem while checking battery level 
*/ 

Helper method to show the battery levels of the connected device. Use it like this:

this.cmbReader.getDeviceBatteryLevel() 
    .then(result => { 
        console.log(result); 
    }) 
    .catch(err => { 
        console.log(err); 
    });

 

 

(Promise) resetConfig()

/*   @return 
      resolve promise if reset is successful 
      reject promise with error message if there is some problem while resetting configuration 
*/ 

To reset the configuration options we can use resetConfig

this.cmbReader.resetConfig() 
    .then(result => { 
    }) 
    .catch(err => { 
        console.log(err); 
    });

 

(void) setParser(parserType: number)

Set cmbScanner result parser. This API must be called when readerDevice is loaded and connected

Example:

this.cmbReader.setParser(CMBReaderConstants.PARSERS.AUTO);

 

(Promise) sendCommand(commandString: string)



9 / 10

/*   @return 
      resolve promise with result depends of commandString 
      reject promise with error message if there is some problem while executing command 
*/ 

Finally, all the methods can be replaced with sending DMCC strings to the READER device. For that we can use our API method
sendCommand. It can be used to control the Reader completely with command strings.\ More on the command strings can be found here or
here

Use it like this:

this.cmbReader.sendCommand("SET SYMBOL.POSTNET OFF") 
    .then(result => { 
        console.log(result); 
    }) 
    .catch(err => { 
        console.log(err); 
    });

 

Events

Events list

The Nativescript cmbReader object extends Observable object and have events that can be listened and used in application. These events
should be set before loadScanner is called.

this.cmbReader.on(CMBReaderConstants.EVENTS.ConnectionStateChanged, (args: any) => { 
 
});

Here are list of the events:

CMBReaderConstants.EVENTS.ReadResultReceived
CMBReaderConstants.EVENTS.AvailabilityChanged
CMBReaderConstants.EVENTS.ConnectionStateChanged
CMBReaderConstants.EVENTS.ScanningStateChanged

 

ReadResultReceived

This event is triggered whenever a scan result is received. The result is a JSON object with this structure:

/** 
* results - json array. If you use multicode mode here you will find main result(set of all partial results together 
* subResults - json array of all partial results (if single code mode is uset this array will be empty) 
* xml - string representation of complete result from reader device in xml format 
 
* results and subResults are json arrays that contains items with this structure: 
*   symbology - integer representation of the barcode symbology detected 
*   symbologyString - string representation of the barcode symbology detected 
*   readString - string representation of barcode 
* goodRead - bool that indicate if barcode is successful scanned 

https://cmbdn.cognex.com/v2.2.x/knowledge/-cognex-mobile-barcode-sdk-for-ios/appendix-a-dmcc-for-the-camera-reader
https://cmbdn.cognex.com/v2.2.x/knowledge/cognex-mobile-barcode-sdk-for-android/appendix-dmcc-for-the-camera-reader


10 / 10

* xml - string representation of partial result in xml format 
* imageGraphics - string that represent svg image from last detected frame 
* image - base64 string that contain image from last detected frame 
* parsedText - string that represent parsed text from the result 
* parsedJSON - string that represent parsed text in json format from the result 
* isGS1 - bool that indicate if barcode is GS1 or not 
*/

 

AvailabilityChanged

This event is triggered when the availability of the ReaderDevice changes (example: when the MX Mobile Terminal has connected or
disconnected the cable, or has turned on or off). The result is an number containing the availability information.

ConnectionStateChanged

This event is triggered when the connection state of the ReaderDevice changes. The result is an number containing the connection
information.

ScanningStateChanged

This event is triggered when the scanner state of the ReaderDevice changes. The result is a boolean that is true if the scanning started, or
false if it stopped.


