Xamarin (v2.2.x)

Introduction

Xamarin is unique by offering a single language - C#, class library, and runtime that
works across all three mobile platforms of iOS, Android, and Windows Phone (Windows
Phone’s native language is already C#), while still compiling native (non-interpreted)
applications that are performant enough even for demanding games.

Each of these platforms has a different feature set and each varies in its ability to write
native applications - that is, applications that compile down to native code and that
interop fluently with the underlying Java subsystem. For example, some platforms only
allow apps to be built in HTML and JavaScript, whereas some are very low-level and only
allow C/C++ code. Some platforms don’t even utilize the native control toolkit.

Xamarin is unique in that it combines all of the power of the native platforms and adds a
number of powerful features of its own, including:

1. Complete Binding for the underlying SDKs - Xamarin contains bindings for
nearly the entire underlying platform SDKs in both iOS and Android. Additionally,
these bindings are strongly-typed, which means that they’re easy to navigate and
use, and provide robust compile-time type checking and during development. This
leads to fewer runtime errors and higher quality applications.

2. Objective-C, Java, C, and C++ Interop - Xamarin provides facilities for directly
invoking Objective-C, Java, C, and C++ libraries, giving you the power to use a wide
array of 3rd party code that has already been created. This lets you take advantage
of existing iOS and Android libraries written in Objective-C, Java or C/C++. Additionally,
Xamarin offers binding projects that allow you to easily bind native Objective-C and
Java libraries using a declarative syntax.

3. Modern Language Constructs - Xamarin applications are written in C#, a modern
language that includes significant improvements over Objective-C and Java such as
Dynamic Language Features , Functional Constructs such as Lambdas , LINQ , Parallel
Programming features, sophisticated Generics , and more.

4. Amazing Base Class Library (BCL) - Xamarin applications use the .NET BCL, a
massive collection of classes that have comprehensive and streamlined features
such as powerful XML, Database, Serialization, 10, String, and Networking support, just
to name a few. Additionally, existing C# code can be compiled for use in an
applications, which provides access to thousands upon thousands of libraries that will
let you do things that aren’t already covered in the BCL.

5. Modern Integrated Development Environment (IDE) - Xamarin uses Xamarin
Studio on Mac OS X and Visual Studio on Windows. These are both modern IDE’s that
include features such as code auto completion, a sophisticated Project and Solution
management system, a comprehensive project template library, integrated source
control, and many others.

6. Mobile Cross Platform Support - Xamarin offers sophisticated cross-platform
support for the three major mobile platforms of iOS, Android, and Windows Phone.
Applications can be written to share up to 90% of their code, and our Xamarin.Mobile

library offers a unified APl to access common resources across all three platforms. This
can significantly reduce both development costs and time to market for mobile
developers that target the three most popular mobile platforms.

How Does Xamarin Work?

Xamarin offers two commercial products: Xamarin.iOS and Xamarin.Android. They’'re both
built on top of Mono, an open-source version of the .NET Framework based on the
published .NET ECMA standards. Mono has been around almost as long as the .NET
framework itself, and runs on nearly every imaginable platform including Linux, Unix,
FreeBSD, and Mac OS X.

On i0S, Xamarin’'s Ahead-of-Time (AOT) Compiler compiles Xamarin.iOS applications
directly to native ARM assembly code. On Android, Xamarin’s compiler compiles down to
Intermediate Language (IL), which is then Just-in-Time (JIT) compiled to native assembly
when the application launches.

In both cases, Xamarin applications utilize a runtime that automatically handles things
such as memory allocation, garbage collection, underlying platform interop, etc.

Xamarin.Forms

Xamarin.Forms is a framework that allows developers to rapidly create cross platform user
interfaces. It provides it's own abstraction for the user interface that will be rendered
using native controls on iOS, Android, Windows, or Windows Phone. This means that
applications can share a large portion of their user interface code and still retain the
native look and feel of the target platform.

Xamarin.Forms allows for rapid prototyping of applications that can evolve overtime to
complex applications. Because Xamarin.Forms applications are native applications, they
don't have the limitations of other toolkits such as browser sandboxing, limited APIs, or
poor performance. Applications written using Xamarin.Forms are able to utilize any of the
API's or features of the underlying platform, such as (but not limited to) Core Motion,
PassKit, and StoreKit on iOS; NFC and Google Play Services on Android; and Tiles on
Windows. In addition, it's possible to create applications that will have parts of their user
interface created with Xamarin.Forms while other parts are created using the native Ul
toolkit.

Xamarin.Forms applications are architected in the same way as traditional cross-platform
applications. The most common approach is to use Portable Libraries or Shared Projects to
house the shared code, and create platform specific applications that will consume the
shared code.

There are two techniques to create user interfaces in Xamarin.Forms. The first technique
is to create Uls entirely with C# source code. The second technique is to use Extensible
Application Markup Language (XAML), a declarative markup language that is used to
describe user interfaces. For more information about XAML, see XAML Basics.

https://developer.xamarin.com/guides/cross-platform/application_fundamentals/pcl/
https://developer.xamarin.com/guides/cross-platform/application_fundamentals/shared_projects/
https://developer.xamarin.com/guides/xamarin-forms/user-interface/xaml-basics/

Instalation

To start developing Xamarin application first you need to install Visual Studio or Xamarin
Studio and make sure to include all necessary Xamarin components. In our examples we
will use Visual Studio to show you how to develop Xamarin application and use our SDK.
Navigate to this link to read step by step how to download and install Visual Studio for
Xamarin applications.

Changelog

version 1.0.4
e Update README.md
version 1.0.3

e Bug fixes
e Custom renderer events changed

version 1.0.2

e Custom renderer implementation changed.

e One Reader Device object is used for every page where scanning will be
implemented

version 1.0.1

e Update to cmbSDK v. 2.0.1
e Handling multicode

Xamarin.Android

Getting Started

In the following sections we will explain how our sample app is developed step by step.
Open Visual Studio and follow these steps:
1. Go to File -> New -> Project.

2. Create Blank App (Android).

https://developer.xamarin.com/guides/cross-platform/getting_started/installation/

) Rect * NeTFmenkdd - Sotty Dk FE Sl p-

i

i s
¢ E Bk A g e VG |
i Vel (# : ﬁ\prpjecltfurcreatinga?(amafin.ﬁ\ndruid |
Windos Univecd G Wear gy o) Vil |
Windows Clssic Desktop .
b Web %J WebView App (Androi] Visuel £
b Offce/SherePaint
€}
NET Care EJ OpenGL Game (Android) Visuel £
NET Standard
Anaraid ii Cles Library (Androi) Visual C#
Cloud
Crogs-Pletiorm \!] Single-View App (Androd) Visual C#
Edensibilty
b 105 ii Bindings Lbary (ncloid) Visuel 2
Tes
b 405 Hﬂ Ui Test App (Kamrin UTest | Androie]) Visual C#
WeF
e | .
Worilow H'!‘ Ut Test App (Androd) Visuel G2 |
b Visual Bisic |
b VitalC++ '
b ViualF#
SOL Server !

ot finding what you are looking for? |

Open Visual Sudio nsaller

Name: KamarinDatebanSample
Location: cuserssonic\documentstvisual studio 2017\ Projects | Browse., |
Solution name: ~ XamarinDataanSample Createdirectory forsolution |
D Create new Gt repostory |
| 0K Cance

When your new project is loaded add a reference to the XamarinDataManLibrary.dll file.

4 [{] XamarinDataManSample
% Connected Services
b M Properties

g Add Reference...

2 Add Web Reference...

:: ¥p Add Connected Service
nN Add Analyzer...

8 i Manage NuGet Packages...
u-B

Scope to This
u-N

g Mew Solution Explorer View

u-B XamarinAndroid. Supportv7.AppCompat
u-B XamarinDataManLibrary
I Assets
[Resources
¢ packages.config
b ¢ ScannerActivity.cs

After creating a blank application, create all resources you will use (icons, images, styles,
layouts, etc.). You can copy them from our sample.

Next right click on your project file, then click Properties and go to Android Manifest
section.

Setup your Manifest file (app nhame, app icon, minimum and maximum android versions),
make sure to enable Camera permission for this application.

KXamarinDataManSample® & X

Application
< N/A N/A
Android Manifest
Android Options
Application name:
Android Package Signing .
@string/app_name
Build
. Package name:
Build Events - .
KamarinDataManSample XamarinDataManSample
Reference Paths

Application icon:

@drawablefic_auncher v

Application theme:
@style/AppTheme

Version number,

1

Version name:

10

Install location:

Prefer Internal v

Minimurn Andraid version:

Android 4.4 (AP Level 19 - Kit Kat) v

Target Android version:
Android 7.0 (API Level 24 - Nougat) v

Required permissions:

[] BROADCAST STICKY A
[] BROADCAST WAP_PUSH

[] CALL PHONE

[] CALL PRIVILEGED

['] CAPTURE_AUDIO_OUTRUT

[] CAPTURE_SECURE VIDEQ_OUTPUT

[] CAPTURE_VIDEO_OUTPUT

[] CHANGE_COMPONENT ENABLED STATE

[] CHANGE_CONFIGURATION y

Scanner Activity

After we've set some necessary properties, we can create the ScannerActivity which

will be the MainLauncher for this application, and inherit some Interfaces.

[Activity (Label = "@string/app_name", MainLauncher = true, Icon = "@drawable/ic_launcher",

entation = ScreenOrientation.Portrait)]

ScreenOri

public class ScannerActivity : Activity, IOnConnectionCompletedListener, IReaderDevicelistener,

Android. Support .V4.App.ActivityCompat . IOnRequestPermissionsResultCallback
{
private static int REQUEST_PERMISSION_CODE = 12322;
private ListView listViewResult;
private TextView tvConnectionStatus;
private Button btnScan;
private Relativelayout rlPreviewContainer;
private ImageView ivPreview;
private List<ReadResult> resultlist;
private Javalist<IDictionary<string, object>> resultlListData;
private ResultlistViewAdapter resultListAdapter;
public static int listViewResultSelectedItem = -1;

private bool isScanning = false;

private static ReaderDevice readerDevice;

private enum DeviceType { MX, PHONE_CAMERA }

private static bool isDevicePicked = false;
private static DeviceType param deviceType = DeviceType.PHONE_CAMERA;

private static bool dialogAppeared = false;

private static string selectedDevice = "";

private bool listeningForUSB = false;

protected override void OnCreate (Bundle savedInstanceState)
{

base.OnCreate (savedInstanceState) ;

SetContentView (Resource.lLayout.activity_scanner) ;

Here we will define some Ul elements and variables that will be used later in the activity:

tvConnectionStatus - TextView an Ul element for current connection status;

listViewResult - ListView an Ul element for results that will be read;

btnScan - Button an Ul element that will trigger readerDevice.StartScanning or

readerDevice.StopScanning;

rIPreviewContainer - ViewGroup (RelativeLayout) container for camera preview;

ivPreview - ImageView control with matching size as its parent for showing the last
frame of a preview or scanning session;

ReaderDevice - cmbSDK object that will present MX Device or Phone Camera depends
of our configuration;

Configure ReaderDevice

Every time the activity starts, we are calling the initDevice where we configure the
reader device object.

If we want to use an MX Device for scanning we can use:

readerDevice = GetMXDevice (this);

if (!listeningForUSB)

{
readerDevice.StartAvailabilityListening() ;
listeningForUSB = true;

The availability of the MX Device can change when the device turns ON or OFF, or if the
USB cable gets connected or disconnected, and this is handled by the
IReaderDevicelistener interface.

If we want to configure the reader device as a Phone Camera we can use:

readerDevice = GetPhoneCameraDevice (this, CameraMode.NoAimer, PreviewOption.Defaults, rlPreviewConta
iner);

The CameraMode parameter is of type CameraMode (defined in CameraMode.java)
and it accepts one of the following values:

e NO_AIMER: Initializes the reader to use a live-stream preview (on the mobile device
screen), so that the user can position the barcode within the camera’s field of view
for detection and decoding. Use this mode when the mobile device does not have an
aiming accessory.

e PASSIVE_AIMER: Initializes the reader to use a passive aimer, an accessory
attached to the mobile device or mobile device case that uses the built-in LED flash
of the mobile device as a light source for projecting an aiming pattern. In this mode
no live-stream preview is presented on the device screen, since an aiming pattern
will be projected.

e FRONT_CAMERA: Initializes the reader to use the mobile front facing camera of the
device, if available (not all mobile devices have a front camera). This is an unusual
but possible configuration. Most front facing cameras do not have auto focus and
illumination, and provide significantly lower resolution images. This option should be
used with care. In this mode illumination is not available.

Al

of the above modes provide the following default settings for the reader:

The rear camera is used.

The zoom feature is available and a button to control it is visible on the live-stream
preview (if displayed).
The simulated hardware trigger is disabled.

When the startScanning() is called, the decoding process is started (See
PreviewOption.PAUSED below for more details).

Based on the selected mode, the following additional options and behaviors are set:

NO_AIMER (NoAimer)
The live-stream preview is displayed when the startScanning() method is called.

Illumination is available, and a button to control it, is visible on the live-stream
preview.

e If commands are sent to the reader for aimer control, they will be ignored.

PASSIVE_AIMER (Passive Aimer)

The live-stream preview will not be displayed when the startScanning() method is
called.

e lllumination is not available, and the live-stream preview will not have an illumination
button.

e If commands are sent to the reader for illumination control, they will be ignored, since
it is assumed in this mode that the built-in LED of the mobile device is being used as
the aimer.

FRONT_CAMERA (FrontCamera)
The live-stream preview is displayed when the startScanning() method is called.
The front camera is used.

lllumination is not available and the live-stream preview will not have an illumination
button.

e If commands are sent to the reader for aimer or illumination control, they will be
ignored.

The PreviewOption parameter is a type of PreviewOption (defined in
PreviewOption.java), and is used to change the reader’s default values or override
defaults derived from the selected CameraMode. Multiple options can be specified by OR-
ing them when passing the parameter. The available options are:

DEFAULTS: Option to accept all defaults set by the CameraMode.

NO_ZOOM_BUTTON: Option to hide the zoom button on the live-stream preview,
preventing a user from adjusting the mobile device camera’s zoom.

e NO_ILLUMINATION_BUTTON: Option to hide the illumination button on the live-
stream preview, preventing a user from toggling the illumination.

¢ HARDWARE_TRIGGER: Option to enable a simulated hardware trigger (the volume
down button) for starting scanning on the mobile device. This button only starts
scanning when pressed. It does not need to be held like a more traditional purpose-
built scanner’s trigger. Pressing the button a second time does not stop the scanning
process.

e PAUSED: If using a live-stream preview, when this option is set, the preview will be
displayed when the startScanning() method is called, but the reader will not start
decoding (i.e. looking for barcodes) until the user presses the on-screen scanning
button to actually start the scanning process.

e ALWAYS _SHOW: Option to force a live-stream preview to be displayed, even if an
aiming mode has been selected (e.g. CameraMode == PASSIVE_AIMER).

Connecting to Device

After configuring the ReaderDevice we need to connect to the device.

Before we make a connection the ReaderDevicelListener object is set in order to
receive events:

readerDevice.SetReaderDevicelistener (this) ;

Additionally, you can enable sending the last triggered image and SVG from the reader
by:

readerDevice.EnableImage (true) ;
readerDevice.EnableImageGraphics (true) ;

Then we can connect with:

readerDevice.Connect (this);

Events that will be invoked are:

10

public void OnConnectionStateChanged (ReaderDevice reader)
public void OnConnectionCompleted (ReaderDevice reader, Throwable error)

If there is an error while trying to connect, the error will be thrown as a parameter in the
OnConnectionCompleted method, otherwise, if no error occurs, the error parameter
will be null.

If the connection is successful, the statement reader.ConnectionState ==
ConnectionState.Connected will be true.

There are couple of API methods for changing some public properties for configuring the
connected device and you should invoke them when the ConnectionState is
connected.

For example if Mobile Camera is used as a ReaderDevice there are no symbologies
enabled by default. You must enable the symbologies that you want to use with the
SetSymbologyEnabled APl method:

readerDevice.SetSymbologyEnabled (Symbology.C128, true, null);

readerDevice.SetSymbologyEnabled (Symbology.Datamatrix, true, null);

readerDevice.SetSymbologyEnabled

(
(
(Symbology.UpcEan, true, null);
(

readerDevice.SetSymbologyEnabled (Symbology.Qr, true, null);

You can do the same directly by sending a command to the connected device with:

readerDevice.DataManSystem. SendCommand ("SET SYMBOL.MICROPDF417 ON");

Scanning Barcodes

With a properly configured reader, you are now ready to scan barcodes. This can be done
by calling the startScanning method from your ReaderDevice object.

What happens next is based on the type of ReaderDevice and how it has been
configured, but in general:

e If using an MX Device, the user can press a trigger button on the device to turn the
scanner on and read a barcode;

11

e If using the camera reader, the cmbSDK starts the camera, displays the configured
live-stream preview, and begins analyzing the frames from the video stream, looking
for a configured barcode symbology;

Scanning stops under one of the following conditions:

The reader found and decoded a barcode;

The user released the trigger or pressed the stop button on the live-stream preview
screen;

The camera reader timed out without finding a barcode;
The application itself calls the stopScanning() method.

When a barcode is decoded successfully (the first case), you will receive a ReadResults
iterable result collection object in the ReaderDevice listener method.

If your MX Device is configured to work with multi code scanning, you can access all
the scanned results from the results.SubResults property which is an array that
contains ReaderResult objects and it will be null if single code scanning is used.

Example

public void OnReadResultReceived (ReaderDevice reader, ReadResults results)

{

listViewResultSelectedItem = -1;
resultList.Clear();
resultListData.Clear();
ivPreview.SetImageBitmap (null) ;

if (results.SubResults != null && results.SubResults.Count > 0)
{
foreach (ReadResult subResult in results.SubResults)
{
if (subResult.IsGoodRead)

{
resultList .Add (subResult) ;

JavaDictionary<string, object> item = new JavaDictionary<string, object>();
item.Add ("resultText", subResult.ReadString);

Symbology sym = subResult.Symbology;
if (sym !'= null)

item.Add ("resultType", subResult.Symbology.Name) ;
else

item.Add ("resultType", "UNKNOWN SYMBOLOGY") ;

resultListData.Add (item) ;

12

listViewResultSelectedItem = resultListData.Count - 1;
}
else

{
resultList.Add (subResult) ;

JavaDictionary<string, object> item = new JavaDictionary<string, object>();
item.Add ("resultText", "NO READ");
item.Add ("resultType", "");

resultListData.Add (item) ;
listViewResultSelectedItem = resultListData.Count - 1;

if (subResult.Image != null)
{

ivPreview.SetImageBitmap (renderSvg (subResult . ImageGraphics, subResult.Image)

}
else
{
if (subResult.ImageGraphics != null)
{
ivPreview.SetImageBitmap (renderSvg (subResult . ImageGraphics, ivPreview.Wi
dth, ivPreview.Height));
}
else
ivPreview.SetImageBitmap (null) ;

t
else if (results.Count > 0)

{
ReadResult result = results.GetResultAt (0);

if (result.IsGoodRead)

{
resultList.Add (result);

JavaDictionary<string, object> item = new JavaDictionary<string, object>();
item.Add ("resultText", result.ReadString);

Symbology sym = result.Symbology;
if (sym != null)

item.Add ("resultType", result.Symbology.Name) ;
else

item.Add ("resultType", "UNKNOWN SYMBOLOGY") ;

resultListData.Add (item) ;

listViewResultSelectedItem = resultListData.Count - 1;
}
else

{
resultList.Add (result);

JavaDictionary<string, object> item = new JavaDictionary<string, object>();
item.Add ("resultText", "NO READ");

item.Add ("resultType", "");

resultListData.Add (item) ;
listViewResultSelectedItem = resultListData.Count - 1;

13

if (result.Image != null)

{

ivPreview.SetImageBitmap (renderSvg (result.ImageGraphics, result.Image));

}

else

{

if (result.ImageGraphics != null)

{

ivPreview.SetImageBitmap (renderSvg (result.ImageGraphics, ivPreview.Width, iv
Preview.Height));

}
else
ivPreview.SetImageBitmap (null) ;

isScanning = false;
btnScan.Text = "START SCANNING";
resultListAdapter.NotifyDataSetChanged() ;

result.Image is the last frame from the scanning process and it will be displayed in the
ivPreview ImageView, and result.ImageGraphics is SVG image that locate barcode
on image.

Disconnecting from Device

In the ScannerActivity we override the OnPause and the OnStop events so we can
do the Disconnect and the StopAvailabilityListening to release all connection when
we navigate from or destroy that activity.

protected override void OnPause ()

{

base.OnPause () ;

if (readerDevice != null)

{

readerDevice.Disconnect () ;

protected override void OnStop ()

{

if (readerDevice != null)
try
{

readerDevice.StopAvailabilityListening() ;

}
catch (System.Exception e) { }

14

listeningForUSB = false;

base.OnStop () ;

Keep in mind there might be cases when a device disconnects due to low battery
condition or manual cable disconnection.

Licensing the SDK

If you plan to use the cmbSDK to do mobile scanning with a smartphone or a tablet
(without the MX mobile terminal), the SDK requires the installation of a license key.
Without a license key, the SDK will still operate, although scanned results will be blurred
(the SDK will randomly replace characters in the scan result with an asterisk character).

Contact your Cognex Sales Representative for information on how to obtain a license key
including trial licenses which can be used for 30 days to evaluate the SDK.

After obtaining your license key there are two ways to add your license key in an
application.

The first one is to add it as a meta tag in application tag in your manifest file:

<application android:label="XamarinDataManSample">

<meta-data android:name="MX_MOBILE_LICENSE" android:value="YOUR_MX_ MOBILE_LICENSE"/>
</application>

Second way is to implement the activation directly from code. When you create your
readerDevice set license key as input parameter in constructor:

readerDevice = GetPhoneCameraDevice (this, CameraMode.NoAimer, PreviewOption.Defaults, rlPreviewConta
iner, "YOUR_MX MOBILE_LICENSE") ;

Api Methods

15

Beep()

To add sound "beep" after successful scan please use the code below:
readerDevice.Beep()

It plays an audio signal on the MX device.

Connect()/Disconnect()

The process of connecting and disconnecting to a MX device is done via the
Connect/Disconnect methods

Connect()

readerDevice.Connect(lOnConnectionCompletedListener listenerObject)

will try to connect to the device. When the Connect() is executed we get the status of

the action in the OnConnectionCompleted listener

OnConnectionCompleted (ReaderDevice reader, Throwable error) {
if (error != null) {

//do something with the error

readerDisconnected() ;

Disconnect()

readerDevice.Disconnect()

will disconnect from the MX device.

Examples:

16

readerDevice = ReaderDevice.GetMXDevice (mContext) ;
readerDevice.StartAvailabilityListening() ;
readerDevice.SetReaderDevicelistener (this) ;
readerDevice.EnableImage (true) ;
readerDevice.Connect (this);

public void OnAvailabilityChanged (ReaderDevice reader)

{
if (reader.GetAvailability () == Availability.Available)

{

readerDevice.Connect (this);

Enablelmage()

The result from a successful scan can return an image. This is the last frame that
resolved in a successful scan. To enable / disable this, we can use the APl method:

void readerDevice.Enablelmage (bool enable)

readerDevice = ReaderDevice.GetPhoneCameraDevice (mContext, CameraMode.NoAimer, PreviewOption.Default
s, rlMainContainer) ;

readerDevice.EnableImage (true) ;

readerDevice.Connect (this);

EnableimageGraphics()

The result from a successful scan can return an SVG image graphics. This is the last
frame that resolved in a successful scan. To enable / disable this, we can use the API
method:

void readerDevice.EnablelmageGraphics(bool enable)

17

readerDevice = ReaderDevice.GetPhoneCameraDevice (mContext, CameraMode.NoAimer, PreviewOption.Default
s, rlMainContainer) ;
readerDevice.EnableImageGraphics (true) ;

readerDevice.Connect (this) ;

GetAvailability()

Before we can connect to an MX device, we need to know if there's one available for
that task.

Availability reader.GetAvailability()

It return Availability object that can be Available, Unavailable or Unknown

An MX device is available when there is an USB connection to our smartphone.

Example

public void OnAvailabilityChanged (ReaderDevice reader)

{
if (reader.GetAvailability () == Availability.Available)

{

readerDevice.Connect (this);

GetDeviceBatterylLevel()

If we want to check the battery level of the MX device we can use

void readerDevice.GetDeviceBatteryLevel(lOnDeviceBatterylLevelListener
listenerObject)

Retrieves the current battery percentage level of the reader device as input parameter
in OnDeviceBatteryLevelReceived listener method

Example

18

public void OnConnectionStateChanged (ReaderDevice reader)

{
if (reader.ConnectionState == ConnectionState.Connected)
{

reader.GetDeviceBatterylevel (this) ;

public void OnDeviceBatterylLevelReceived (ReaderDevice p0O, int pl, Throwable p2)
{
int batterylevel = pl;

IsLightsOn()/SetLightsOn()

If we want to check whether all lights of the MX device are turned on or off

void readerDevice.lsLightsOn(lOnLightsListener liste nerObject)

Retrieves if lights of the reader device are turned on or off as input parameter in
OnLightsOnCompleted listener method

To turned MX device light on or off we use

void readerSetLightsOn(bool _enable, IOnLightsListener listenerObject)

Example

public void OnConnectionStateChanged (ReaderDevice reader)
{
if (reader.ConnectionState == ConnectionState.Connected)
{
reader.IsLightsOn (this) ;

public void OnLightsOnCompleted (ReaderDevice p0, Java.Lang.Boolean pl, Throwable p2)
{
bool 1lightsON = pl.BooleanValue();

19

IsSymbologyEnabled()/Set SymbologyEnabled()

If we want to check some symbology is enabled or disabled we can use

void readerDevice.lsSymbologyEnabled(Symbology symbology,
IOnSymbologyListener listenerObje ct)

Retrieves if symbology is enabled or disabled as input parameter in
OnSymbologyEnabled listener method

To enable specific symbology we use

void readerDevice.SetSymbologyEnabled(Symbology symbology, bool enable,
IOnSymbologyListener listenerObject)

Example

public void OnConnectionStateChanged (ReaderDevice reader)

{

if (reader.ConnectionState == ConnectionState.Connected)

{
reader. IsSymbologyEnabled (Symbology.Azteccode, this);

public void OnSymbologyEnabled (ReaderDevice p0O, Symbology pl, Java.Lang.Boolean p2, Throwable p3)

}

ResetConfig()

To reset MX Device configuration settings to default use

void reader.ResetConfig(lOnResetConfigListener liste nerObject)

In OnResetConfigCompleted listener we can check if resetting was successful by
checking if Throwable input parameter error is null or not

public void OnResetConfigCompleted (ReaderDevice p0O, Throwable pl)

20

if (pl != null)

Console.WriteLine ("Resetting was unsuccessful. Error: " + pl.Message);

SetReaderDevicelistener()

To register listener functions OnAvailabilityChanged, OnConnectionStateChanged

and OnReadResultReceived we need to call this method before we try to connect to
reader device

void readerDevice.SetReaderDevicelListener(lReaderDevicelListener listenerObject)

public void OnAvailabilityChanged (ReaderDevice reader)

{
if (reader.GetAvailability () == Availability.Available)
{

readerDevice.Connect (this);

public void OnConnectionStateChanged (ReaderDevice reader)

{
if (reader.ConnectionState == ConnectionState.Connected)
{
}
else i1if (reader.ConnectionState ==
{
}

ConnectionState.Disconnected)

public void OnReadResultReceived (ReaderDevice reader, ReadResults results)

{
if (results.Count > 0)

{
ReadResult result = results.GetResultAt (0);

if (result.IsGoodRead)
{

Example

21

readerDevice = ReaderDevice.GetPhoneCameraDevice (mContext, CameraMode.NoAimer, PreviewOption.Default
s, rlMainContainer) ;

readerDevice.SetReaderDevicelistener (this) ;

readerDevice.Connect (this) ;

StartAvailabilityListening()/StopAvailabilityListening()

After we call readerDevice.SetReaderDevicelListener(lReaderDevicelListener
listenerObject) method and register OnAvailabilityChanged listener function we can
start/stop availability listening

StartAvailabilityListening()

void readerDevice.StartAvailabilityListening()

will start listening reader device availability and will trigger listener function every time
when availability is changed

StopAvailabilityListening()

void readerDevice.StopAvailabilityListe ning()

will stop listening reader device availability

Examples:

readerDevice = ReaderDevice.GetMXDevice (mContext) ;
readerDevice.StartAvailabilityListening() ;
readerDevice.SetReaderDevicelistener (this) ;
readerDevice.Connect (this) ;

protected override void Dispose (bool disposing)
{
if (readerDevice != null && readerDevice.ConnectionState == ConnectionState.Connected)
{
readerDevice.SetReaderDevicelistener (null) ;
readerDevice.Disconnect () ;

if (readerDevice != null)
try
{

22

readerDevice.StopAvailabilityListening () ;
}
catch (System.Exception e) { }

base.Dispose (disposing) ;

StartScanning()/StopScanning()

After we connect and configure our reader device and set all settings that we need we
can start scanning process.

To start scanning we use method

void readerDevice.StartScanning()

Scanning process will stop when our reader successfully scan some barcode or we can
stop scanning manually with this method

void readerDevice.StopScanning()

When scanning is stopped, no matter with successful scan or with stopScanning() method
OnReadResultReceived listener function will be called where we can check our scan
result

public void OnReadResultReceived (ReaderDevice reader, ReadResults results)
{
if (results.Count > 0)
{
ReadResult result = results.GetResultAt (0);

if (result.IsGoodRead)
{
Symbology sym = result.Symbology;
if (sym != null)
{
tvSymbology.Text = sym.Name;
}
else
{
tvSymbology.Text = "UNKNOWN SYMBOLOGY";
}
tvCode.Text = result.ReadString;

}

else
{
tvSymbology.Text = "NO READ";

23

tvCode.Text = "";
t

ivPreview.SetImageBitmap (result.Image) ;

}

Xamarin.ioOS

Getting Started

In the following sections we will explain how our sample app is developed step by step.
Open Visual Studio and follow this steps:
1. Go to File -> New -> Project.

2. Create Blank App (iPhone).

24

b Recent NET Femenork 461+ Sorthy: Defauk
4 |nctalled F(a
ﬂ Blenk App (Phone}
i Vsug
B ¥ N
Windows Universa ﬁ] Master-Detal App (Phone]
Windows Clssic Desktop i
b Web 'LEI Metal Gare (Phane|
b Offce/SharePoirt
if -
MNET Core C! Open6L Game (Phone)
NET Standard -
Android *J Page Based App (Phone)
0
Cloud
P
Crogs-Platform ﬂl SceneiCt Game (Phane)
Etensiblty
. "(“
i |;J Single View App (Phone)
l
Anple Watch -
Extensions I Spritekit Game (IPhone]
iad
. 'l(“
iPhone "] Tabbed App (Phone)
. g
Universal .
Tet S| Wethiew Ap (Phone
@J po (Phone]
b 03
[a
Nat inding what you are looking for!
Open Visual Sudlo nstaller
Name AamarnSamplel05
Loction: clusersonicldocumentsisual studio 201T\Projects

Solution name: ~ XamaninSamplel05

When your new project is loaded add reference to XamarinDataManLibrary.dll file.

Viual (2

Visual (2

Visual (2

Viual (2

Visual (3

Visual (2

Viual (2

Yisual (2

Visual (2

Viual (2

Search (Chl+E) P

Type: Visual C#
Empty projectfor iPhane,

Browse..

Creete directory forsolution
D Creete new (ot reposiory

K Cancel

25

4 [# XamarinSamplelOS
£F: Connected Services

w

& Anak Add Reference...

u-B Syste Add Web Reference...

"B Syste ¥n Add Connected Service

-H

SR Add Analyzer...

u-B Xami

nE Xam. i: Manage NuGet Packages...
b [Q Asset Ca Scopeto This

=8 hative R Mew Sclution Explorer View

F Assets. it ovrces

Applconsdf.appiconset
Resources
B = AppDelegate.cs
Entitlernents.plist
Info.plist

O

Launch5creen.storyboard
B Main.cs

[l Main.storyboard
b ViewController.cs

Next open your Info.plist file and set some project properties for your needs (app
name, deployment target, main interface, etc..).

AEEIication Visual Assets ~ Capabiitis Advanced

Application Name:

Bundle Identifier. com cognexxamarinsampleios
Version: 10

Build 1

Deployment Target: 90

MainInteface: ~ Main

Devices; Universal

Device Orientation: D D D D

Portrait [Landscape Left ~ [v] Upside Down

Status BarSyle Default
|| Hide status bar

|| Requires fullscreen

"] Landscape Right

Important thing here is to add Camera permission for this app. In Visual Studio there is no
options to add this permission from here. You need to open your Info.plist file in some

text editor and add this lines:

<key>NSCameraUsageDescription</key>

<string>Camera used for scanning</string>

Also if you use MX Device as reader device add this protocols in Info.plist:

27

<key>UISupportedExternalAccessoryProtocols</key>
<array>
<string>com.cognex.dmcc</string>
<string>com.demo.data</string>
</array>

View Controller

The ViewController will be our first controller in Main.storyboard. Here we are
creating some Ul elements and variables that will be used later in this controller.

public partial class ViewController : UIViewController, ICMBReaderDeviceDelegate
{
protected ViewController (IntPtr handle) : base (handle)
{

// Note: this .ctor should not contain any initialization logic.

CMBReaderDevice readerDevice;
public bool isScanning = false;

private NSMutableArray tableData;
private MXResultsTableSource tableSource;

public override void ViewDidLoad ()

{
base.ViewDidLoad () ;

IblIConnection - Label Ul element for current connection status.
tableSource - UlTableViewSource for results that will be read.
btnScan - Button Ul element that will trigger StartScanning or StopScanning.

ivPreview - ImageView Ul element for showing the last frame of a preview or scanning
session.

CMBReaderDevice - cnbSDK object that will present MX Device or Phone Camera

depends of our configuration.

Configure ReaderDevice

28

Here we override the ViewWillAppear method to configure reader device object when
this view will appear.

If we want to use MX Device for scanning we are using

readerDevice = CMBReaderDevice.ReaderOfMXDevice () ;

The availability of the MX Device can change when the device turns ON or OFF, or if the
USB cable gets connected or disconnected, and is handled by the
ICMBReaderDeviceDelegate interface. We set this interface as property for reader
device with

readerDevice.WeakDelegate = this;

and allow us to listen these three events:

public void DidReceiveReadResultFromReader (CMBReaderDevice reader, CMBReadResults readResults)
public void AvailabilityDidChangeOfReader (CMBReaderDevice reader)
public void ConnectionStateDidChangeOfReader (CMBReaderDevice reader)

If we want to configure reader device as Mobile Camera.

readerDevice = CMBReaderDevice.ReaderOfDeviceCameraWithCameraMode (CDMCameraMode .NoAimer, CDMPreviewO

ption.Defaults, ivPreview);

The CameraMode parameter is of the type CDMCameraMode, and it accepts one of
the following values:

o NoAimer: Initializes the reader to use a live-stream preview (on the mobile device
screen) so the user can position the barcode within the camera’s field of view for
detection and decoding. Use this mode when the mobile device does not have an
aiming accessory.

e PassiveAimer: Initializes the reader to use a passive aimer, which is an accessory
that is attached to the mobile device or mobile device case that uses the built-in LED
flash of the mobile device as a light source for projecting an aiming pattern. In this
mode, no live-stream preview is presented on the device screen, since an aiming
pattern will be projected.

e FrontCamera: Initializes the reader to use the front facing camera of the mobile
device, if available (not all mobile devices have a front camera). This is an unusual,
but possible configuration. Most front-facing cameras do not have auto focus and

29

illumination, and provide significantly lower resolution images. This option should be
used with care. In this mode illumination is not available.

Al

of the above modes provide the following default settings for the reader:

The rear camera is used.

The zoom feature isa vailable and a button to control it is visible on the live-streamp
review (if displayed).
The simulated hardware trigger is disabled.

When startScanning() is called, the decoding process is started. (Seek
CDMPreviewOptionPaused for more details.)

Based on the selected mode, the following additional options and behaviors are set:

NoAimer

The live-stream preview is displayed when the startScanning() method is called.
lllumination is available and a button to control it is visible on the live-stream preview.
If commands are sent to the reader for aimer control, they will be ignored.

PassiveAimer

The live-stream preview will not be displayed when the startScanning() method is
called.

e lllumination is not available and the live-stream preview will not have an illumination
button.

e If commands are sent to the reader for illumination control, they will be ignored, since
it is assumed in this mode that the built-in LED of the mobile device is being used for
the aimer.

FrontCamera
The live-stream preview is displayed when the startScanning() method is called.
The front camera is used.

lllumination is not available, and the live-stream preview will not have an illumination
button. If commands are sent to the reader for aimer or illumination control, they will
be ignored.

The previewOptions parameter (of type CDMPreviewOption) is used to change the
reader’'s default values or override defaults derived from the selected CameraMode.
Multiple options can be specified by OR-ing them when passing the parameter. The
available options are the following:

Def aults: Use this option to accept all defaults set by the CameraMode.

NoZoomBtn: This option hides the zoom button on the live-stream preview,
preventing a user from adjusting the zoom of the mobile device camera.

e NolllumBtn: This hides the illumination button on the live-stream preview,

30

preventing a user from toggling the illumination.

e HwTrigger: This enables a simulated hardware trigger (the volume down button)for
starting scanning on the mobile device. This button only starts scanning when
pressed. It does not need to be held like a more traditional purpose-built scanner’s
trigger. Pressing the button a second time does not stop the scanning process.

e Paused: If using a live-stream preview, when this option is set, the preview will be
displayed when the startScanning() method is called, but the reader will not start
decoding (i.e. looking for barcodes) until the user presses the on-screen scanning
button to actually start the scanning process.

e AlwaysShow: This forces alive-stream preview to be displayed, even if an aiming
mode has been selected (e.g. CameraMode == PassiveAimer)

The last parameter of the type UlView is optional and is used as a container for the
camera preview. If the parameter is left nil, a full screen preview will be used.

Connecting to Device

After configuring ReaderDevice we need to connect to the device.

readerDevice.ConnectWithCompletion ((error) => {
if (error != null)

{

new UIAlertView ("Failed to connect", error.Description, null, "OK", null).Show () ;

}
)i

If there is some error while trying to connect error will be thrown as parameter in callback
function. If everything is fine error parameter will be null.

This function will trigger ConnectionStateDidChangeOfReader method. If connection is
successful reader.ConnectionState == ConnectionState.Connected.

After successful connection we can set some settings for ReaderDevice. ReaderDevice
settings can be set with already wrapped functions or directly with sending commands to
the configured device.

For example if Mobile Camera is used as a ReaderDevice there are no symbologies
enabled by default. You must enable the symbologies that you want to use with the
SetSymbology wrapped function.

In this example we are enable some symbologies and set setting to get the last frame
from scanning in ivPreview ImageView.

readerDevice.SetSymbology (CMBSymbology.DataMatrix, true, (error) =>
{

if (error != null)

31

System.Diagnostics.Debug.WritelLine ("FALIED TO ENABLE [DataMatrix], ", error.LocalizedDescr
iption);
}

1)
readerDevice.SetSymbology (CMBSymbology.Qr, true, (error) =>

{

if (error != null)

{
System.Diagnostics.Debug.WriteLine ("FALIED TO ENABLE [Qr], ", error.LocalizedDescription);

}
})i
readerDevice.SetSymbology (CMBSymbology.C128, true, (error) =>

{

if (error != null)

{
System.Diagnostics.Debug.WriteLine ("FALIED TO ENABLE [C128], ", error.LocalizedDescription)

}
1)
readerDevice.SetSymbology (CMBSymbology.UpcEan, true, (error) =>

{

if (error != null)

{
System.Diagnostics.Debug.WriteLine ("FALIED TO ENABLE [UpcEan], ", error.LocalizedDescriptio

readerDevice.ImageResultEnabled = true;
readerDevice.SVGResultEnabled = true;
readerDevice.DataManSystem. SendCommand ("SET IMAGE.SIZE 0");

Scanning Barcodes

With a properly configured reader, you are now ready to scan barcodes. This can be done
by calling the startScanning method from your ReaderDevice object.

What happens next is based on the type of Reader Device and how it has been
configured, but in general:

e If using an MX Device, the user can now press a trigger button on the device to turn
the scanner on and read a barcode;

e If using the camera reader, the cmbSDK starts the camera, displays the configured
live-stream preview, and begins analyzing the frames from the video stream, looking
for a configured barcode symbology.

Scanning stops under one of the following conditions:

e The reader found and decoded a barcode;
e The userreleased the trigger or pressed the stop button on the live-stream preview

32

screen;
e The camera reader timed out with out finding a barcode;
e The application itself calls the stopScanning() method.

When a barcode is decoded successfully (the first case), you will receive a ReadResults
iterable result collection object in ReaderDevice listener method.

If your MX Device is configured to work with multi code scanning, you can access all
the scanned results from the results.SubResults property which is an array that
contains ReaderResult objects and it will be null if single code scanning is used.

Example

public void DidReceiveReadResultFromReader (CMBReaderDevice reader, CMBReadResults readResults)

{
btnScan.SetTitle ("START SCANNING", UIControlState.Normal);
isScanning = false;

tableData.RemoveAllObjects () ;

if (readResults.SubReadResults != null && readResults.SubReadResults.Length > 0)

{
tableData.AddObjects (readResults.SubReadResults) ;
tvResults.ReloadData () ;

}
else if (readResults.ReadResults.Length > 0) {
tableData.Add (readResults.ReadResults[0]) ;

tableSource.SetItems (tableData);
tableSource.displayResult (0) ;
tvResults.ReloadData () ;

tvResults.SelectRow (NSIndexPath.FromRowSection (0,0), false, UlITableViewScrollPosition.No

ne) ;

Disconnecting from Device

There may be cases when a device disconnects due to low battery condition or manual
cable disconnection. These cases can be detected by the
ConnectionStateDidChangeOfReader callback of the ICMBReaderDeviceDelegate.

33

Note: The AvailabilityDidChangeOfReader method is also called when the device
becomes physically unavailable. It means that the (re)connection is not possible. Always
check the availability property of the ReaderDevice object before trying to call the
ConnectWithCompletion method.

Licensing the SDK

If you plan to use the cmbSDK to do mobile scanning with a smartphone or a tablet (with
no MX mobile terminal), then the SDK requires the installation of a license key. Without a
license key, the SDK will still operate, although scanned results will be obfuscated (the
SDK will randomly replace characters in the scan result with an asterisk character).

Contact your Cognex Sales Representative for information on how to obtain a license key
including trial licenses which can be used for 30 days to evaluate the SDK.

After obtaining your license key there is two ways to add your license key in application.

The first one is to add it as a key with a value in the project specific Info.plist file:

<key>MX_MOBILE_LICENSE</key>
<string>Your license key</string>

And the second way to implement an activation is directly from the code when you
create your readerDevice:

readerDevice = CMBReaderDevice.ReaderOfDeviceCameraWithCameraMode (CDMCameraMode .NoAimer, CDMPreviewO
ption.Defaults, ivPreview, "YOUR_MX MOBILE_LICE");

Xamarin.Forms

Getting Started

In the following sections we will explain how our sample app is developed step by step.

Open Visual Studio and follow these steps:

1. Go to File -> New -> Project.

34

2. Create Cross-Platform App(Xamarin.Forms).

) Recr * NTFamenokd6] + Sotby Deak
4 [nsfaled
| I

4 Vel (2

Windaws Universa

1 =
=+

Crogs-Platform App (£amenin Forms)

UVTest App (Kamarin UTest | Cross-Pletform)

=

Windows Clssic Desktop
b Web
b Office/SharePoint
NET Core
NET Standard
Android
Cloud
Crogs-Pletform
Edensiblty
b i08
Test
b 05
WCF
Workflow
b Visual Basic
b Visual C++
b Visual F¢
0L Server !
ot finding what you are looking for!

Open Visual S Insaller
| Name HemarnFormsDatzlan
Locatio: clusersanicdocumentstvisual studio 2017 Projecs

Soltionmame KemannFormsDatahan

i Search (Ctr+E] P

Ve e Vel C# |

A mutproject template for bulding apps
Vil ¢ fori0S, Andraid, and Windows with |
~ Yamatinznd Yamarin Foms,

Browe..

Creete directory forsolution l
D Create new (3t reostory

0K Cancel

After loading, see Android Getting Started section to see how to setup references, and

the manifest.xml for the Android platform, or iOS Getting Started and Info.plist file

35

https://cmbdn.cognex.com/v2.2.x/knowledge/xamarin/xamarin.android/getting-started
https://cmbdn.cognex.com/v2.2.x/knowledge/xamarin/xamarin.ios/getting-started

for the iOS platform.

Portable Project

In the portable project we create one page (MainPage) where we create a layout for a
scanning page and one class(CameraPreview.cs) that will inherit from View control and
have some properties and events.

CameraPreview control is added in MainPage:

<Grid x:Name="gridCamera">

<local:CameraPreview x:Name="cameraPreview" SelectedDevice="MobileCamera" ResultReceived="C
ameraPreview_ResultReceived" ConnectionStateChanged="CameraPreview_ConnectionStateChanged" />

<Label x:Name="lblStatus" Text=" Disconnected " TextColor="White" FontSize="11" VerticalOpt
ions="Start" HorizontalOptions="End" HorizontalTextAlignment="Center" BackgroundColor="#ff4444" Marg
in="0,2,5,0" />
</Grid>

In Android and iOS platform specific projects we have custom renderers
(ScannerView.cs) for this class, and with that we can use native elements in portable
project.

Custom Renderer

ViewRenderer in Android platform specific project:

protected override void OnElementChanged (ElementChangedEventArgs<CameraPreview> e)
{
base.OnElementChanged (e) ;

if (e.OldElement != null || Element == null)
{

return;

rlMainContainer = new Relativelayout (Context) ;

rlMainContainer.SetMinimumHeight (50) ;

rlMainContainer.SetMinimumWidth (100) ;

rlMainContainer.LayoutParameters = new Relativelayout.LayoutParams (RelativeLayout.Layout
Params.MatchParent, Relativelayout.LayoutParams.MatchParent);

36

https://cmbdn.cognex.com/v2.2.x/knowledge/xamarin/xamarin.forms/custom-renderer

ivPreview = new ImageView (Context) ;

ivPreview.SetMinimumHeight (50) ;

ivPreview.SetMinimumWidth (100) ;

ivPreview.LayoutParameters = new RelativeLayout.LayoutParams (RelativeLayout .LayoutParams
.MatchParent, Relativelayout.LayoutParams.MatchParent) ;

ivPreview.SetScaleType (ImageView.ScaleType.FitCenter) ;

rlMainContainer.AddView (1ivPreview) ;

if (Control == null)
SetNativeControl (rlMainContainer) ;

MainActivity.instance.setActiveReader (Control, Element);

In MainActivity in Android platform specific project we are handling with reader device
object (almost the same like ScannerActivity for Xamarin.Android) and from custom
renderer we are just call setActiveReader method and pass Control(native RelativelLayout
element) and Element(CameraPreview object which is initialized from MainPage).

ViewRenderer in iOS platform specific project:

protected override void OnElementChanged (ElementChangedEventArgs<XamarinFormsDataMan.CameraPreview>
e)

base.OnElementChanged (e) ;

if (e.OldElement != null || Element == null)
{

return;

container = new UIView();

ivPreview = new UIImageView () ;

ivPreview.ContentMode = UIViewContentMode.ScaleToFill;
ivSVG = new UIImageView () ;

1vSVG.ContentMode = UIViewContentMode.ScaleToFill;

container.AddSubview (ivPreview) ;
container.AddSubview (1vSVG) ;

ivPreview.Frame = new CoreGraphics.CGRect (0, 0, container.Frame.Size.Width, container.Fr
ame.Size.Height) ;

ivPreview.AutoresizingMask = UIViewAutoresizing.FlexibleHeight | UIViewAutoresizing.Flex
ibleWidth;

ivSVG.Frame = new CoreGraphics.CGRect (0, 0, container.Frame.Size.Width, container.Frame.
Size.Height);
ivSVG.AutoresizingMask = UIViewAutoresizing.FlexibleHeight | UIViewAutoresizing.Flexible

Width;

if (Control == null)
SetNativeControl (container) ;

AppDelegate.instance.setActiveReader (Control, Element) ;

37

https://cmbdn.cognex.com/v2.2.x/knowledge/xamarin/xamarin.android/scanner-activity

In AppDelegate in iOS platform specific project we are handling with reader device
object (almost the same like View Controller for Xamarin.iOS) and from custom renderer
we are just call setActiveReader method and pass Control(native UllmageView element)
and Element(CameraPreview object which is initialized from MainPage).

Configuring ReaderDevice, Connecting to Device, Scanning Barcodes and
Disconnecting from Device are the same and you can read about them in
Xamarin.Android and Xamarin.iOS sections.

Licensing the SDK

Licensing the SDK must also be implemented separately in Android and in iOS projects.

For the Android oriented solution please check this link, and for the iOS solution you can
refer to this resource.

Migration from mwSDK to cmbSDK

Difference between mwSDK and cmbSDK

The Manatee Works Barcode Scanner SDK has been fully integrated into the Cognex
Mobile Barcode SDK (cmbSDK). Therefore, we are shifting our focus to the cmbSDK.

The good news is that the cmbSDK is backward compatible with the MW SDK. The
cmbSDK simply adds a higherlevel API to the scanning methods that utilize the camera
of a smartphone or tablet. Or, you can continue to use the lowerlevel methods you have
become familiar with in the Manatee Works SDK. Your account, login, license(s), and
key(s) remain the same. If you do decide to program to the higherlevel API, you will
have the added benefit of your app(s) supporting the Cognex MX Series mobile barcode
readers, and MX Series mobile terminals, with a single code base.

Remove mwSDK

To avoid collision between mwSDK and comSDK you need to remove reference that
refer to old MWBarcodeScanner.dll file in your platform specific project.

38

https://cmbdn.cognex.com/v2.2.x/knowledge/xamarin/xamarin.ios/view-controller
https://cmbdn.cognex.com/v2.2.x/knowledge/xamarin/xamarin.android
https://cmbdn.cognex.com/v2.2.x/knowledge/xamarin/xamarin.ios
https://cmbdn.cognex.com/v2.2.x/knowledge/xamarin#xamarin.android/licensing-the-sdk
https://cmbdn.cognex.com/v2.2.x/knowledge/xamarin#xamarin.ios/licensing-the-sdk

—1" —— 1 ——

4 B References
& Analyzers /
-8 MWBarcodeScanner
u-B SharedMWEProject
=-B System

u-B Systemn.Core

Add cmbSDK

Next copy new XamarinDataManLibrary.dll file that contain cmbSDK in your platform
specific project directory, and add new reference to that dll.

Please navigate to this url to check step by step how to integrate cmbSDK inside your
Xamarin project.

After that please remove all APl's and methods that you are using from mwSDK, and
follow our guide from here to see how to implement cmbSDK in your project.

Here are some of the main differences in code between mwSDK and cmbSDK:

1.

Initialize, create and connect reader device

- Using mwSDK we don't have that ReaderDevice object and we use APl methods
from BarcodeScanner object to initialize decoder before starting the scanner
process: set active codes, set scanning rect, set decoder level, register sdk, etc.
When we use cmbSDK all this things are done in code behind with default values
when we create ReaderDevice object. Here some of the settings can be setin
constructor as input parameter and another one can be set/changed after we create
and connect to reader device. Using cmbSDK not only creating reader device in
enough to start scanning process, we also need to connect to reader device and set
necessary callbacks that will handle response from connection state changed,
availability, result received, etc.

. Start scanning process

- With mwSDK after we initialize decoder we are ready to start the scanning. There
are two different methods for starting the scanner.One for partial view (where we can
set size as input parameter) and one for full screen. Also we can choose if we want
this methods to return object result or we will expect result in a callback function.
Using cmbSDK there is only one method to start the scanning process and comes
from ReaderDevice object (readerDevice.startScanning()). We can't start scanning
process if we don't have valid connection to reader device. Here if we want to use full
screen mode when we create reader device in constructor will send null as input
parameter for previewContainer, or if we want to use partial view we must to create
that container in our layout and send as input parameter. Result from scanning
process will be received in onReadResultReceived callback function.

. Result received

- If we have successful read or we stop the scanning process and have no read, result

39

https://cmbdn.cognex.com/v2.2.x/knowledge/xamarin/introduction
https://cmbdn.cognex.com/v2.2.x/knowledge/xamarin/introduction

object will be received in onReadResultReceived. In cmbSDK result object is more
extended than in mwSDK. From that object we can read our barcode result,
symbology, image from last frame, SVG result, etc.

40

