
t it le:	App	Starters	(v2.4.x)	;	ver:	2.7.x 1	/	10

App	Starters	(v2.4.x)

Xamarin	Forms	Shopping	Cart

Gett ing	Started

To	start	developing	Xamarin	application	first	you	need	to	install	Visual	Studio	or	Xamarin
Studio	and	make	sure	to	include	all	necessary	Xamarin	components.	For	this	example,
we	will	use	Visual	Studio.	On	this	link	you	can	read	step	by	step	how	to	download	and
install	Visual	Studio	for	Xamarin	applications.

In	this	section	we	have	basic	explanation	how	this	demo	project	is	developed.	If	you
need	more	detailed	explanation	and	more	information	about	the	objects	and	methods
please	check	this	link

Once	you	finish	with	installation	open	Visual	Studio	and	follow	these	steps:

1.	Go	to	File	->	New	->	Project .

2.	Create	Mobile	App	(Xamarin.Forms).

3.	Select	Blank	App	template	for	Android	and	iOS	platform	and	.NET	Standard	code
sharing	strategy.

https://developer.xamarin.com/guides/cross-platform/getting_started/installation/
https://cmbdn.cognex.com/v2.4.x/knowledge/xamarin

t it le:	App	Starters	(v2.4.x)	;	ver:	2.7.x 2	/	10

This	solution	contains	three	projects:

1.Portable	Class	Libraries	(PCL)​	Project

​	A	Portable	Class	Library	(PCL)	is	a	special	type	of	project	that	can	be	used	across
disparate	CLI	platforms	such	as	Xamarin.iOS	and	Xamarin.Android,	as	well	as	WPF,
Universal	Windows	Platform,	and	Xbox.	The	library	can	only	utilize	a	subset	of	the
complete	.NET	framework,	limited	by	the	platforms	being	targeted.

2.	Android	Plat f orm-Specif ic	Applicat ion	Project

Android	platform-specific	project	must	reference	the	assemblies	required	to	bind
Xamarin.Android	platform	SDK,	as	well	as	the	Core,	shared	code	project.

3.	iOS	Plat f orm-Specif ic	Applicat ion	Project

iOS	platform-specific	project	must	reference	the	assemblies	required	to	bind	Xamarin.iOS
platform	SDK,	as	well	as	the	Core,	shared	code	project.

Portable	Class	Libraries	(PCL)	Project

In	the	portable	project	we	have	MainPage	where	all	main	lists	are	presented,
Product ItemPage	where	are	shown	all	products	for	a	specific	list,	EditModalPage	is	a
custom	popup	to	edit	list/product	name,	MainList Item	and	ProductList Item	models
that	present	list	items	for	lists/products,	and	ScannerCont rol	custom	View	control.

t it le:	App	Starters	(v2.4.x)	;	ver:	2.7.x 3	/	10

ScannerCont rol	is	a	class	that	inherits	from	Xamarin.Forms.View	control	and	we	add
some	additional	custom	properties	and	event	handlers.	Later	we	will	implement	custom
renderer	for	this	class	in	platform-specific	projects.

Here	we	are	using	ScannerCont rol	in	Product ItemPage	to	add	new	or	edit	an
existing	items.

In	code	behind	first	we	need	to	initialize,	connect	and	configure	scannerCont rol	in
order	to	start	scanning	process

With	scannerCont rol.StartScanning()	we	start	the	scanning	process

Android	Platform-Specific	Project

In	this	project	we	will	set	all	settings	that	we	need	for	android	platform	(min	android

https://docs.microsoft.com/en-us/xamarin/xamarin-forms/app-fundamentals/custom-renderer/

t it le:	App	Starters	(v2.4.x)	;	ver:	2.7.x 4	/	10

version,	target	android	version,	app	name,	package	name	..),	require	permissions	that	we
need,	add	resources	for	android	platform	,	create	custom	renderers	for	android	platform	,
etc..

First	we	will	check	Camera	as	required	permission	for	this	application.

Next	will	add	resources(that	we	use	in	portable	project)	in	drawable	folder.

Now	we	need	to	reference	XamarinDataManLibrary.dll	in	order	to	use	the	cmbSDK.

t it le:	App	Starters	(v2.4.x)	;	ver:	2.7.x 5	/	10

At	the	time	when	this	document	is	written,	there	is	a	bug	for	Xamarin	Forms	with
navigation	bar	icon	on	the	android	platform,	that's	why	in	this	project	we	have	a	small
modification	on	Toolbar.axml	and	there	is	a	custom	renderer	for	Navigation
Page(CustomNavigationRenderer).

Here	we	will	create	custom	renderer	for	ScannerControl	(PCL	custom	control)	for	Android
platform.	You	don't	need	to	edit	this	class.	Use	the	same	one	in	your	project

[assembly:	Xamarin.Forms.ExportRenderer(typeof(ShoppingCart.ScannerControl),	typeof(ShoppingCart.Dro
id.ScannerControl))]
namespace	ShoppingCart.Droid
{
				public	class	ScannerControl	:	ViewRenderer<ShoppingCart.ScannerControl,	RelativeLayout>,	IOnConn
ectionCompletedListener,
								IReaderDeviceListener,	IOnSymbologyListener
				{
								private	RelativeLayout	rlMainContainer;

								private	ReaderDevice	readerDevice;
								private	bool	availabilityListenerStarted	=	false;

								private	static	Bitmap	svgBitmap;

								public	ScannerControl(Context	context)	:	base(context)
								{
								}

								protected	override	void	OnElementChanged(ElementChangedEventArgs<ShoppingCart.ScannerControl
>	e)
								{
												base.OnElementChanged(e);

t it le:	App	Starters	(v2.4.x)	;	ver:	2.7.x 6	/	10

												if	(e.OldElement	!=	null	||	Element	==	null)
												{
																return;
												}

												rlMainContainer	=	new	RelativeLayout(Context)
												{
																LayoutParameters	=	new	RelativeLayout.LayoutParams(RelativeLayout.LayoutParams.Match
Parent,	RelativeLayout.LayoutParams.MatchParent)
												};

...

	

iOS	Platform-Specific	Project

In	this	project,	we	will	set	all	settings	that	we	need	for	the	ios	platform	(deployment
target,	app	name,	bundle	identifier	..),	require	permissions	that	we	need,	add	assets,
create	custom	renderers	for	the	ios	platform,	etc...

Open	Inf o.plist 	file 	with	some	text	editor	and	add	the	following	lines:

<key>NSCameraUsageDescription</key>
<string>Camera	used	for	scanning</string>

NSCameraUsageDescript ion	key	is	for	camera	permission.

Next	will	add	new	icons	in	the	Assets	catalog	and	will	create	one	more	asset	catalog
named	ScannerImages	and	add	icons	in	that	catalog

t it le:	App	Starters	(v2.4.x)	;	ver:	2.7.x 7	/	10

Now	we	need	to	reference	XamarinDataManLibrary.dll	in	order	to	use	the	cmbSDK.

ScannerCont rol	class	is	custom	renderer	for	ScannerCont rol(PCL	custom
cont rol)	for	iOS	platform.

[assembly:	Xamarin.Forms.ExportRenderer(typeof(ShoppingCart.ScannerControl),	typeof(ShoppingCart.iOS
.ScannerControl))]
namespace	ShoppingCart.iOS
{
				public	class	ScannerControl	:	ViewRenderer<ShoppingCart.ScannerControl,	UIView>,	ICMBReaderDevic
eDelegate
				{

t it le:	App	Starters	(v2.4.x)	;	ver:	2.7.x 8	/	10

								private	UIView	container;

								private	CMBReaderDevice	readerDevice;
								private	CDMCameraMode	cameraMode	=	CDMCameraMode.NoAimer;

								private	UIAlertController	connectingAlert;

								private	NSObject	didBecomeActiveObserver;

								protected	override	void	OnElementChanged(ElementChangedEventArgs<ShoppingCart.ScannerControl
>	e)
								{
												base.OnElementChanged(e);

												if	(e.OldElement	!=	null	||	Element	==	null)
												{
																return;
												}

												container	=	new	UIView();

												if	(Control	==	null)
																SetNativeControl(container);

...

	

Licensing	the	SDK

If	you	plan	to	use	the	cmbSDK	to	do	mobile	scanning	with	a	smartphone	or	a	tablet
(without	the	MX	mobile	terminal),	the	SDK	requires	the	installation	of	a	license	key.
Without	a	license	key,	the	SDK	will	still	operate,	although	scanned	results	will	be	blurred
(the	SDK	will	randomly	replace	characters	in	the	scan	result	with	an	asterisk	character).

Contact	your	Cognex	Sales	Representative	for	information	on	how	to	obtain	a	license	key
including	trial	licenses	which	can	be	used	for	30	days	to	evaluate	the	SDK.

After	obtaining	your	license	key	there	are	two	ways	to	add	your	license	key	to	an
application.

For	Android	Plat f orm	open	your	manifest	file 	and	add	this	meta	tag	inside	the
application	tag

<meta-data	android:name="MX_MOBILE_LICENSE"	android:value="YOUR_MX_MOBILE_LICENSE"	/>

or	you	can	register	your	SDK	directly	from	code	when	you	create	camera	scanner

t it le:	App	Starters	(v2.4.x)	;	ver:	2.7.x 9	/	10

//	Create	a	scanner	device
								private	void	CreateScannerDevice()
								{
												//**
*
												//	Create	a	camera	scanner
												//
												//	NOTE:	SDK	requires	a	license	key.	Refer	to
												//							the	SDK's	documentation	on	obtaining	a	license	key	as	well	as	the	methods	for
												//							passing	the	key	to	the	SDK	(in	this	example,	we're	relying	on	an	entry	in
												//							plist.info	and	androidmanifest.xml--also	sdk	key	can	be	passed
												//							as	a	parameter	in	this	(GetPhoneCameraDevice)	constructor).
												//**
*
												scannerControl.GetPhoneCameraDevice(ScannerCameraMode.NoAimer,	ScannerPreviewOption.Defa
ults,	false,	"SDK_KEY");

												//	Connect	to	device
												scannerControl.Connect();
								}

	

For	iOS	Plat f orm	open	Info.plist	file 	and	add	this	key

<key>MX_MOBILE_LICENSE</key>
<string>Your	license	key</string>

or	you	can	register	your	SDK	directly	from	code	when	you	create	camera	scanner

//	Create	a	scanner	device
								private	void	CreateScannerDevice()
								{
												//**
*
												//	Create	a	camera	scanner
												//
												//	NOTE:	SDK	requires	a	license	key.	Refer	to
												//							the	SDK's	documentation	on	obtaining	a	license	key	as	well	as	the	methods	for
												//							passing	the	key	to	the	SDK	(in	this	example,	we're	relying	on	an	entry	in
												//							plist.info	and	androidmanifest.xml--also	sdk	key	can	be	passed
												//							as	a	parameter	in	this	(GetPhoneCameraDevice)	constructor).
												//**
*
												scannerControl.GetPhoneCameraDevice(ScannerCameraMode.NoAimer,	ScannerPreviewOption.Defa
ults,	false,	"SDK_KEY");

												//	Connect	to	device
												scannerControl.Connect();
								}

t it le:	App	Starters	(v2.4.x)	;	ver:	2.7.x 10	/	10

	

