
1 / 9

React Native (v2.4.x)

Integrate the cmbSDK React-Native Module in your App

Download the plugin via npm

$ npm install cmbsdk-react-native --save

Mostly automatic installation

$ react-native link cmbsdk-react-native

Import the component in your react-native app by adding this

JavaScript

import { CMBReader, cmb } from 'cmbsdk-react-native';

You can access all of the API methods through the cmb constant, and all of the enums and constants are available in the CMBReader class.

Before continuing, download the cmbSDK React-Native zip file from our download section, and see the API reference.

Download page: https://cmbdn.cognex.com/download

API reference: https://cmbdn.cognex.com/knowledge/react-nat/rct-api-metho

Integrating cmbSDK iOS React-Native Module

Make sure you have downloaded the cmbSDK React-Native zip archive from our download page. From the downloaded zip file, open the iOS
directory.

1. If you are using the mobile device's built in camera, do the same with the "MWBScannerImages.xcassets" file located in the iOS/Resources
directory.

2. In your projects info.plist file you need to add a key depending on the readerDevice type that you are using.

If you are using the device camera for scanning, add the "NSCameraUsageDescription" key with a description on how your app will use
the camera (for example: Scanning barcodes").
If you're using a MX-1xxx device, you will need to add a "Supported external accessory protocols" array with an item "com.cognex.dmcc".
You will also need to follow this GUIDE before publishing your MX-1xxx enabled app to the app store. This is ONLY required for scanning
with an MX mobile terminal.

And that's it. You should be able to run your app with the cmbSDK react-native module working.

Integrating cmbSDK Android React-Native Module

https://cmbdn.cognex.com/download
https://cmbdn.cognex.com/knowledge/react-nat/rct-api-metho
https://cmbdn.cognex.com/v2.1.x/knowledge/-cognex-mobile-barcode-sdk-for-ios#getting-your-mx-mobile-terminal-enabled-app-into-the-app-store

2 / 9

Make sure you have downloaded the cmbSDK React-Native zip archive from our download page. From the downloaded zip file, open the
Android/cmbsdk-android-binary directory.

1. Open the yourRNApp/android/app/ directory, create a new folder named "libs" if there isn't one already, and open it. Place the file
"cmbsdklib-release.aar" inside the libs folder. This aar can be found in "Android/cmbsdk-android-binary" from the downloaded zip file

2. Open the app build.gradle located in yourRNApp/android/app and add these lines:

- Above the dependencies add this:

repositories {
 flatDir {
 dirs 'libs'
 }
}

3. Open the build.gradle located in yourRNApp/android and change the minSdkVersion to 19 or above

And that's it. You should be able to run your app with the cmbSDK react-native module working.

API METHODS

loadScanner()

To get a scanner up and running, the first thing to do, is to call the loadScanner() method. It expects a CMBReader.DEVICE_TYPE param.
This method does not connect to the Reader Device. We need to call connect() in the callback to actually connect to the Reader Device

cmb.loadScanner(CMBReader.DEVICE_TYPE.MXReader).then((response) => {
 cmb.getAvailability().then((response) => {
 if (response == CMBReader.AVAILABILITY.Available) {
 connectReader();
 }
 }).catch((rejecter) => {
 })
});

connect()

/* @return
 (promise) {
 status : boolean, if connection succeeded true if not false
 err : string , if status false err will not be null
 }
*/

The result from the connect() method is returned as a Promise and it will contain the result of the connection attempt:

cmb.connect().then((connectMethodResult) => {
 // do something after a connection has been established
 configureReader();
}).catch((failure) => {

3 / 9

 console.log("CMB - connectReader failed: "+JSON.stringify(failure))
});

There is an Event Listener for the connection status of the ReaderDevice, namely the CMBReader.EVENT.ConnectionStateChanged event
which is explained in more detail below.

disconnect()

/* @return
 (promise) {
 status : boolean, if disconnect succeeded true if not false
 err : string , if status false err will not be null
 }
*/

Just as there is connect(), there is a disconnect() method that does the opposite of connect() :

cmb.disconnect();

Similarly to connect(), disconnect() also triggers the CMBReader.EVENT.ConnectionStateChanged event.

startScanning()

/* @return Promise
 (bool) value of the Scanner Activity (true if the command was successful, false otherwise ex: if readerDevice not ini
*/

To start / stop the scanning process, we use these methods. They return a promise, which will be resolved if the command was successful
(the scanning has started or stopped) or rejected otherwise (if there is no active ReaderDevice initialized or isn't connected).

After starting the scanner and scanning a barcode, the scan result triggers the CMBReader.EVENT.ReadResultReceived event.

setSymbologyEnabled()

Once there is a connection to the Reader, we can enable symbologies by calling setSymbologyEnabled(). It expects three params: a
CMBReader.SYMBOLOGY which is the symbology to be enabled or disabled, a boolean for ON/OFF, and a String for the commandID for
handling the command result.

cmb.setSymbology(CMBReader.SYMBOLOGY.QR, true, CMBReader.SYMBOLOGY_NAME.QR);

This method triggers the CMBReader.EVENT.CommandCompleted event, whose result contains the commandID string from the third
parameter, so that you know which commands have succeeded and which have failed in the event result.

isSymbologyEnabled()

To check if we have a symbol enabled, we use isSymbologyEnabled(). It takes two arguments: the CMBReader.SYMBOLOGY that we are
checking, and a commandID string used for identifying the response. The result triggers
the CMBReader.EVENT.CommandCompleted event, and it contains the commandID string from the second parameter, so that you know
which commands have succeeded and which have failed in the event result.

4 / 9

cmb.isSymbologyEnabled(CMBReader.SYMBOLOGY.QR, CMBReader.SYMBOLOGY_NAME.QR);

setLightsOn()

/* @return
 (promise) {
 status : boolean, true if successfully executed command
 err : string , if status false err will not be null
 }
*/

If we want to enable the flash we can use setLightsOn(). It expects one argument boolean and returns a promise.

isLightsOn()

/* @return
 (promise) {
 status : boolean, true if lights are on, false otherwise
 err : string , in case of error (e.g. reader not initialized)
 }
*/

We can check the lights status with isLightsOn(), which returns a promise.

getConnectionState()

/**
@return A promise that resolves with the CMBReader.CONNECTION_STATE value of the current reader device
*/

If you need to get the current connection state, getConnectionState() can be used

cmb.getConnectionState().then(function(connectionState){
 if (connectionState == CMBReader.CONNECTION_STATE.Connected) {
 // reader is connected
 }
});

setCameraMode()

This should be used only when using the device's built in camera for scanning (CMBReader.DEVICE_TYPE.Camera).

To set how the camera will behave when we use CAMERA device as a barcode reader, we use setCameraMode(). It takes
a CMBReader.CAMERA_MODE argument.

5 / 9

cmb.setCameraMode(CMBReader.CAMERA_MODE)
/**
Use camera with no aimer. Preview is on, illumination is available.
CMBReader.CAMERA_MODE.NoAimer = 0,

Use camera with a basic aimer (e.g., StingRay). Preview is off, illumination is not available.
CMBReader.CAMERA_MODE.PassiveAimer = 1,

Use camera with an active aimer (e.g., MX-100). Preview is off, illumination is available.
CMBReader.CAMERA_MODE.ActiveAimer = 2,

Use mobile device front camera. Preview is on, illumination is not available.
CMBReader.CAMERA_MODE.FrontCamera = 3
*/

Note: CameraMode should be set BEFORE we call loadScanner() for it to take effect.

setPreviewOptions()

This should be used only when using the device's built in camera for scanning (CMBReader.DEVICE_TYPE.Camera).

This function expects one integer argument that is a result of the OR-ed result of all the preview options that we want enabled.

cmb.setPreviewOptions(CMBReader.CAMERA_PREVIEW_OPTION.NoZoomBtn | CMBReader.CAMERA_PREVIEW_OPTION.NoIllumBtn);

Note: PreviewOptions should be set BEFORE we call loadScanner() for it to take effect.

setPreviewContainerPositionAndSize()

This should be used only when using the device's built in camera for scanning (CMBReader.DEVICE_TYPE.Camera).

setPreviewContainerPositionAndSize takes an array argument with four integer objects, which are the X and Y values for the top left
coordinate, and width and height values for the preview container size. All of the values are percentages of the device's screen.

cmb.setPreviewContainerPositionAndSize([0,0,100,50]);
//will set the preview to 0,0 and 100% width 50% height

setPreviewContainerFullScreen()

This should be used only when using the device's built in camera for scanning (CMBReader.DEVICE_TYPE.Camera).

Sets the camera preview to start in full screen instead of partial view.

cmb.setPreviewContainerFullScreen();

setPreviewContainerBelowStatusBar()

6 / 9

This should be used only when using the device's built in camera for scanning (CMBReader.DEVICE_TYPE.Camera).

Available only on iOS.

Sets the camera preview partial view top axis to start below the status bar matching the Androids behavior. It expects one boolean argument.

cmb.setPreviewContainerBelowStatusBar(true);
cmb.setPreviewContainerPositionAndSize([0,0,100,50]);
//will set the preview to 0,0 and 100% width 50% height.
//On iOS the partial view will be shown below the status bar.

cmb.setPreviewContainerBelowStatusBar(false);
cmb.setPreviewContainerPositionAndSize([0,0,100,50]);
//will set the preview to 0,0 and 100% width 50% height.
//On iOS the partial view will start from the top of the screen, and will overlap the status bar.

enableImage()

Used to enable / disable image result type. Expects one boolean argument.

cmb.enableImage(true);

enableImageGraphics()

Used to enable / disable svg result type. Expects one boolean argument.

cmb.enableImageGraphics(true);

setParser()

Enable or disable parsing for scanned barcodes. Expects one argument of type CMBReader.RESULT_PARSER.

cmb.setParser(CMBReader.RESULT_PARSER.GS1);

getDeviceBatteryLevel()

/* @return
 (promise) {

7 / 9

 value : int
 err : string , in case of error (e.g. reader not initialized)
 }
*/

Method to show the battery level of the connected device. Doesn't take any arguments.

resetConfig()

/* @return
 (promise) {
 status : boolean, true if reset was successful, false otherwise
 err : string , in case of error (e.g. reader not initialized)
 }
*/

To reset the configuration options we can use resetConfig.

cmb.resetConfig(function(result){
 console.log(result);
})

sendCommand()

All the methods can be replaced with sending DMCC strings to the READER device. For that we can use our API method sendCommand. It
can be used to control the Reader completely with command strings. It takes two string arguments, first of which is the DMCC itself, and the
second one is to identify it in the response event.

More on the command strings can be found here or here.

cmb.sendCommand("SET SYMBOL.POSTNET OFF", "postnetCommandID");

createMDMAuthCredentials()

Available only on iOS.

Used for creating authentication credentials used for MDM reporting. It takes four string arguments: username, password, clientID and
clientSecret.

Should be called before setMDMReportingEnabled.

More on the MDM Reporting can be found here

cmb.createMDMAuthCredentials("username", "password", "clientID", "clientSecret");

https://cmbdn.cognex.com/knowledge/-cognex-mobile-barcode-sdk-for-ios/appendix-a-dmcc-for-the-camera-reader/appendix-a-dmcc-for-the-camera-reader
https://cmbdn.cognex.com/knowledge/cognex-mobile-barcode-sdk-for-android/appendix-dmcc-for-the-camera-reader/appendix-dmcc-for-the-camera-reader
https://cmbdn.cognex.com/knowledge/mdm-solutions/ios/adding-mdm-reporting-to-an-application

8 / 9

setMDMReportingEnabled()

Available only on iOS.

A company owning and operating many Cognex Mobile Terminals may want to remotely collect up-to-date information about battery level,
battery health, installed firmware, etc.

An iOS application using the cmbSDK framework can report status information of the attached Mobile Terminal to an MDM instance. This can
be enabled with the setMDMReportingEnabled method that accepts one boolean argument.

More on the MDM Reporting can be found here

cmb.setMDMReportingEnabled(true);

Events

The React native cmbSDK module emits Events that can be used in the js application.

These should be added in the componentDidMount function, and removed in componentWillUnmount (see React component lifecycle).

First, create the event emitter:

import NativeModules.NativeEventEmitter;
const scannerListener = new NativeEventEmitter(cmb);

and then add listeners for each event you want to handle:

scannerListener.addListener(
 CMBReader.EVENT.ReadResultReceived,
 (result) => {
 if (result.goodRead == true){
 Alert.alert(
 result.symbologyString,
 result.readString
);
 }
 }
);

Here are all the events that the cmbSDK module can emit:

CMBReader.EVENT.ReadResultReceived
CMBReader.EVENT.AvailabilityChanged
CMBReader.EVENT.ConnectionStateChanged
CMBReader.EVENT.ScanningStateChanged
CMBReader.EVENT.CommandCompleted

CMBReader.EVENT.ReadResultReceived
This event is triggered whenever a scan result is received. A result is a CMBReadResults object (see CMBReadResults class
reference).

https://cmbdn.cognex.com/knowledge/mdm-solutions/ios/adding-mdm-reporting-to-an-application
https://reactjs.org/docs/react-component.html
https://cmbdn.cognex.com/cmbSDK/programmers-reference-ios/html/interface_c_m_b_read_results.html

9 / 9

CMBReader.EVENT.AvailabilityChanged
This event is triggered when the availability of the ReaderDevice changes (example: when the MX Mobile Terminal has connected or
disconnected the cable, or has turned on or off). The result is an int containing the availability information.

CMBReader.EVENT.ConnectionStateChanged
This event is triggered when the connection state of the ReaderDevice changes. The result is an int containing the connection
information.

CMBReader.EVENT.ScanningStateChanged
This event is triggered when the scanner state of the ReaderDevice changes. The result is a boolean that is true if the scanning
started, or false if it stopped.

CMBReader.EVENT.CommandCompleted
This event is triggered when a ReaderDevice command has completed. The result contains the following information:

commandID (String, the same param that was used to send the command)
eventType (String, ex: isSymbologyEnabled)
command (String, the command that was sent)
success (Boolean)
status (nullable, int, command status (See CDMResponse.h))
message (nullable, String, command payload)
image (nullable, base64 String representation of the scan image)
response (nullable, Boolean, command response, ex: isSymbologyEnabled will return true/false here)

