
t it le:	React	Native	(v2.4.x)	;	ver:	2.7.x 1	/	12

React	Native	(v2.4.x)

Integrate	the	cmbSDK	React-Nat ive	Module	in	your	App

Download	the	plugin	via	npm

$	npm	install	cmbsdk-react-native	--save

Mostly	automatic	installation

$	react-native	link	cmbsdk-react-native

Import	the	component	in	your	react-native	app	by	adding	this

JavaScript

import	{	CMBReader,	cmb	}	from	'cmbsdk-react-native';

You	can	access	all	of	the	API	methods	through	the	cmb	constant,	and	all	of	the	enums
and	constants	are	available	in	the	CMBReader	class.	

	

Before	continuing,	download	the	cmbSDK	React-Native	z ip	file 	from	our	download	section,
and	see	the	API	reference.

Download	page:	https://cmbdn.cognex.com/download

API	reference:	https://cmbdn.cognex.com/knowledge/react-nat/rct-api-metho

Integrat ing	cmbSDK	iOS	React-Nat ive	Module

Make	sure	you	have	downloaded	the	cmbSDK	React-Native	z ip	archive	from	our
download	page.	From	the	downloaded	zip	file ,	open	the	iOS	directory.

1.	If	you	are	using	the	mobile	device's	built	in	camera,	do	the	same	with	the
"MWBScannerImages.xcassets"	file 	located	in	the	iOS/Resources	directory.	

#javascript-tab-1
https://cmbdn.cognex.com/download
https://cmbdn.cognex.com/knowledge/react-nat/rct-api-metho

t it le:	React	Native	(v2.4.x)	;	ver:	2.7.x 2	/	12

2.	In	your	projects	info.plist	file 	you	need	to	add	a	key	depending	on	the	readerDevice
type	that	you	are	using.

If	you	are	using	the	device	camera	for	scanning,	add	the
"NSCameraUsageDescription"	key	with	a	description	on	how	your	app	will	use	the
camera	(for	example:	Scanning	barcodes").
If	you're	using	a	MX-1xxx	device,	you	will	need	to	add	a	"Supported	external
accessory	protocols"	array	with	an	item	"com.cognex.dmcc".	You	will	also	need	to
follow	this	GUIDE	before	publishing	your	MX-1xxx	enabled	app	to	the	app	store.	This	is
ONLY	required	for	scanning	with	an	MX	mobile	terminal.

	

And	that's	it.	You	should	be	able	to	run	your	app	with	the	cmbSDK	react-native	module
working.

	

Integrat ing	cmbSDK	Android	React-Nat ive	Module

Make	sure	you	have	downloaded	the	cmbSDK	React-Native	z ip	archive	from	our
download	page.	From	the	downloaded	zip	file ,	open	the	Android/cmbsdk-android-binary
directory.

1.	Open	the	yourRNApp/android/app/	directory,	create	a	new	folder	named	"libs"	if
there	isn't	one	already,	and	open	it.	Place	the	file 	"cmbsdklib-release.aar"	inside	the	libs
folder.	This	aar	can	be	found	in	"Android/cmbsdk-android-binary"	from	the	downloaded	zip
file

2.	Open	the	app	build.gradle	located	in	yourRNApp/android/app	and	add	these	lines:

-	Above	the	dependencies	add	this:

repositories	{
				flatDir	{
								dirs	'libs'
				}
}

3.	Open	the	build.gradle	located	in	yourRNApp/android	and	change	the	minSdkVersion
to	19	or	above

	

And	that's	it.	You	should	be	able	to	run	your	app	with	the	cmbSDK	react-native	module
working.

https://cmbdn.cognex.com/v2.1.x/knowledge/-cognex-mobile-barcode-sdk-for-ios#getting-your-mx-mobile-terminal-enabled-app-into-the-app-store

t it le:	React	Native	(v2.4.x)	;	ver:	2.7.x 3	/	12

API	METHODS

loadScanner()

To	get	a	scanner	up	and	running,	the	first	thing	to	do,	is	to	call
the	loadScanner()	method.	It	expects	a	CMBReader.DEVICE_TYPE	param.	This	method
does	not	connect	to	the	Reader	Device.	We	need	to	call	connect ()	in	the	callback	to
actually	connect	to	the	Reader	Device

cmb.loadScanner(CMBReader.DEVICE_TYPE.MXReader).then((response)	=>	{
	 cmb.getAvailability().then((response)	=>	{
	 	 if	(response	==	CMBReader.AVAILABILITY.Available)	{
	 	 	 connectReader();
	 	 }
	 }).catch((rejecter)	=>	{
	 })
});

	

connect()

/*			@return	
				(promise)		{
								status	:	boolean,	if	connection	succeeded	true	if	not	false
								err	:	string	,	if	status	false	err	will	not	be	null
				}
*/	

The	result	from	the	connect()	method	is	returned	as	a	Promise	and	it	will	contain	the
result	of	the	connection	attempt:

cmb.connect().then((connectMethodResult)	=>	{
	 //	do	something	after	a	connection	has	been	established
	 configureReader();
}).catch((failure)	=>	{
	 console.log("CMB	-	connectReader	failed:	"+JSON.stringify(failure))
});

There	is	an	Event	Listener	for	the	connection	status	of	the	ReaderDevice,	namely
the	CMBReader.EVENT.Connect ionStateChanged	event	which	is	explained	in	more

t it le:	React	Native	(v2.4.x)	;	ver:	2.7.x 4	/	12

detail	below.

disconnect()

/*			@return	
				(promise)		{
								status	:	boolean,	if	disconnect	succeeded	true	if	not	false
								err	:	string	,	if	status	false	err	will	not	be	null
				}
*/	

Just	as	there	is	connect (),	there	is	a	disconnect ()	method	that	does	the	opposite
of	connect ()	:

cmb.disconnect();

Similarly	to	connect (),	disconnect ()	also	triggers
the	CMBReader.EVENT.Connect ionStateChanged	event.

startScanning()

/*			@return	Promise
						(bool)	value	of	the	Scanner	Activity	(true	if	the	command	was	successful,	false	otherwise	ex:	
if	readerDevice	not	initialized)
*/

To	start	/	stop	the	scanning	process,	we	use	these	methods.	They	return	a	promise,	which
will	be	resolved	if	the	command	was	successful	(the	scanning	has	started	or	stopped)	or
rejected	otherwise	(if	there	is	no	active	ReaderDevice	initialized	or	isn't	connected).

After	starting	the	scanner	and	scanning	a	barcode,	the	scan	result	triggers
the	CMBReader.EVENT.ReadResultReceived	event.

setSymbologyEnabled()

Once	there	is	a	connection	to	the	Reader,	we	can	enable	symbologies	by
calling	setSymbologyEnabled().	It	expects	three	params:	a
CMBReader.SYMBOLOGY	which	is	the	symbology	to	be	enabled	or	disabled,	a	boolean	for
ON/OFF,	and	a	String	for	the	commandID	for	handling	the	command	result.

t it le:	React	Native	(v2.4.x)	;	ver:	2.7.x 5	/	12

cmb.setSymbology(CMBReader.SYMBOLOGY.QR,	true,	CMBReader.SYMBOLOGY_NAME.QR);

This	method	triggers	the	CMBReader.EVENT.CommandCompleted	event,	whose
result	contains	the	commandID	string	from	the	third	parameter,	so	that	you	know	which
commands	have	succeeded	and	which	have	failed	in	the	event	result.

isSymbologyEnabled()

To	check	if	we	have	a	symbol	enabled,	we	use	isSymbologyEnabled().	It	takes	two
arguments:	the	CMBReader.SYMBOLOGY	that	we	are	checking,	and	a	commandID	string
used	for	identifying	the	response.	The	result	triggers
the	CMBReader.EVENT.CommandCompleted	event,	and	it	contains
the	commandID	string	from	the	second	parameter,	so	that	you	know	which	commands
have	succeeded	and	which	have	failed	in	the	event	result.

cmb.isSymbologyEnabled(CMBReader.SYMBOLOGY.QR,	CMBReader.SYMBOLOGY_NAME.QR);

	

setLightsOn()

/*			@return	
				(promise)		{
								status	:	boolean,	true	if	successfully	executed	command
								err	:	string	,	if	status	false	err	will	not	be	null
				}
*/	

If	we	want	to	enable	the	flash	we	can	use	setLightsOn().	It	expects	one	argument
boolean	and	returns	a	promise.

isLightsOn()

/*			@return	
				(promise)		{
								status	:	boolean,	true	if	lights	are	on,	false	otherwise
								err	:	string	,	in	case	of	error	(e.g.	reader	not	initialized)
				}
*/	

t it le:	React	Native	(v2.4.x)	;	ver:	2.7.x 6	/	12

We	can	check	the	lights	status	with	isLightsOn(),	which	returns	a	promise.

getConnect ionState()

/**
@return	A	promise	that	resolves	with	the	CMBReader.CONNECTION_STATE	value	of	the	current	reader	devi
ce
*/

If	you	need	to	get	the	current	connection	state,	getConnect ionState()	can	be	used

cmb.getConnectionState().then(function(connectionState){
		if	(connectionState	==	CMBReader.CONNECTION_STATE.Connected)	{
			 	 //	reader	is	connected
		}
});

	

setCameraMode()

This	should	be	used	only	when	using	the	device's	built	in	camera	for	scanning
(CMBReader.DEVICE_TYPE.Camera).

To	set	how	the	camera	will	behave	when	we	use	CAMERA	device	as	a	barcode	reader,
we	use	setCameraMode().	It	takes	a	CMBReader.CAMERA_MODE	argument.

cmb.setCameraMode(CMBReader.CAMERA_MODE)
/**
Use	camera	with	no	aimer.	Preview	is	on,	illumination	is	available.
CMBReader.CAMERA_MODE.NoAimer	=	0,

Use	camera	with	a	basic	aimer	(e.g.,	StingRay).	Preview	is	off,	illumination	is	not	available.
CMBReader.CAMERA_MODE.PassiveAimer	=	1,

Use	camera	with	an	active	aimer	(e.g.,	MX-100).	Preview	is	off,	illumination	is	available.
CMBReader.CAMERA_MODE.ActiveAimer	=	2,

Use	mobile	device	front	camera.	Preview	is	on,	illumination	is	not	available.
CMBReader.CAMERA_MODE.FrontCamera	=	3
*/

Note:	CameraMode	should	be	set	BEFORE	we	call	loadScanner()	for	it	to	take	effect.

t it le:	React	Native	(v2.4.x)	;	ver:	2.7.x 7	/	12

setPreviewOptions()

This	should	be	used	only	when	using	the	device's	built	in	camera	for	scanning
(CMBReader.DEVICE_TYPE.Camera).

This	function	expects	one	integer	argument	that	is	a	result	of	the	OR-ed	result	of	all	the
preview	options	that	we	want	enabled.

cmb.setPreviewOptions(CMBReader.CAMERA_PREVIEW_OPTION.NoZoomBtn	|	CMBReader.CAMERA_PREVIEW_OPTION.No
IllumBtn);

Note:	PreviewOptions	should	be	set	BEFORE	we	call	loadScanner()	for	it	to	take	effect.

setPreviewContainerPosit ionAndSize()

This	should	be	used	only	when	using	the	device's	built	in	camera	for	scanning
(CMBReader.DEVICE_TYPE.Camera).

setPreviewContainerPosit ionAndSize	takes	an	array	argument 	with	f our
integer	objects,	which	are	the	X	and	Y	values	f or	the	top	lef t
coordinate,	and	width	and	height 	values	f or	the	preview	container	size.	All
of 	the	values	are	percentages	of 	the	device's	screen.

cmb.setPreviewContainerPositionAndSize([0,0,100,50]);
//will	set	the	preview	to	0,0	and	100%	width	50%	height

	

setPreviewContainerFullScreen()

This	should	be	used	only	when	using	the	device's	built	in	camera	for	scanning
(CMBReader.DEVICE_TYPE.Camera).

Sets	the	camera	preview	to	start	in	full	screen	instead	of	partial	view.

cmb.setPreviewContainerFullScreen();

t it le:	React	Native	(v2.4.x)	;	ver:	2.7.x 8	/	12

	

setPreviewContainerBelowStatusBar()

This	should	be	used	only	when	using	the	device's	built	in	camera	for	scanning
(CMBReader.DEVICE_TYPE.Camera).

Available	only	on	iOS.

Sets	the	camera	preview	partial	view	top	axis	to	start	below	the	status	bar	matching	the
Androids	behavior.	It	expects	one	boolean	argument.	

cmb.setPreviewContainerBelowStatusBar(true);
cmb.setPreviewContainerPositionAndSize([0,0,100,50]);
//will	set	the	preview	to	0,0	and	100%	width	50%	height.	
//On	iOS	the	partial	view	will	be	shown	below	the	status	bar.

cmb.setPreviewContainerBelowStatusBar(false);
cmb.setPreviewContainerPositionAndSize([0,0,100,50]);
//will	set	the	preview	to	0,0	and	100%	width	50%	height.	
//On	iOS	the	partial	view	will	start	from	the	top	of	the	screen,	and	will	overlap	the	status	bar.

	

enableImage()

Used	to	enable	/	disable	image	result	type.	Expects	one	boolean	argument.

cmb.enableImage(true);

	

enableImageGraphics()

Used	to	enable	/	disable	svg	result	type.	Expects	one	boolean	argument.

t it le:	React	Native	(v2.4.x)	;	ver:	2.7.x 9	/	12

cmb.enableImageGraphics(true);

	

setParser()

Enable	or	disable	parsing	for	scanned	barcodes.	Expects	one	argument	of	type
CMBReader.RESULT_PARSER.

cmb.setParser(CMBReader.RESULT_PARSER.GS1);

	

getDeviceBatteryLevel()

/*			@return	
				(promise)		{
								value	:	int
								err	:	string	,	in	case	of	error	(e.g.	reader	not	initialized)
				}
*/	

Method	to	show	the	battery	level	of	the	connected	device.	Doesn't	take	any	arguments.

resetConfig()

/*			@return	
				(promise)		{
								status	:	boolean,	true	if	reset	was	successful,	false	otherwise
								err	:	string	,	in	case	of	error	(e.g.	reader	not	initialized)
				}
*/	

To	reset	the	configuration	options	we	can	use	resetConf ig.

cmb.resetConfig(function(result){
		console.log(result);

t it le:	React	Native	(v2.4.x)	;	ver:	2.7.x 10	/	12

})

	

sendCommand()

All	the	methods	can	be	replaced	with	sending	DMCC	strings	to	the	READER	device.	For
that	we	can	use	our	API	method	sendCommand.	It	can	be	used	to	control	the	Reader
completely	with	command	strings.	It	takes	two	string	arguments,	first	of	which	is	the
DMCC	itself,	and	the	second	one	is	to	identify	it	in	the	response	event.	

More	on	the	command	strings	can	be	found	here	or	here.

cmb.sendCommand("SET	SYMBOL.POSTNET	OFF",	"postnetCommandID");	

	

createMDMAuthCredent ials()

Available	only	on	iOS.

Used	for	creating	authentication	credentials	used	for	MDM	reporting.	It	takes	four	string
arguments:	username,	password,	clientID	and	clientSecret.

Should	be	called	bef ore	setMDMReport ingEnabled.

More	on	the	MDM	Reporting	can	be	found	here

cmb.createMDMAuthCredentials("username",	"password",	"clientID",	"clientSecret");	

	

setMDMReport ingEnabled()

Available	only	on	iOS.

A	company	owning	and	operating	many	Cognex	Mobile	Terminals	may	want	to	remotely
collect	up-to-date	information	about	battery	level,	battery	health,	installed	firmware,	etc.

https://cmbdn.cognex.com/knowledge/-cognex-mobile-barcode-sdk-for-ios/appendix-a-dmcc-for-the-camera-reader/appendix-a-dmcc-for-the-camera-reader
https://cmbdn.cognex.com/knowledge/cognex-mobile-barcode-sdk-for-android/appendix-dmcc-for-the-camera-reader/appendix-dmcc-for-the-camera-reader
https://cmbdn.cognex.com/knowledge/mdm-solutions/ios/adding-mdm-reporting-to-an-application

t it le:	React	Native	(v2.4.x)	;	ver:	2.7.x 11	/	12

An	iOS	application	using	the	cmbSDK	framework	can	report	status	information	of	the
attached	Mobile	Terminal	to	an	MDM	instance.	This	can	be	enabled	with
the	setMDMReportingEnabled	method	that	accepts	one	boolean	argument.

More	on	the	MDM	Reporting	can	be	found	here

cmb.setMDMReportingEnabled(true);

	

Events

The	React	native	cmbSDK	module	emits	Events	that	can	be	used	in	the	js	application.

These	should	be	added	in	the	componentDidMount	function,	and	removed	in
componentWillUnmount	(see	React	component	lifecycle).

First,	create	the	event	emitter:

import	NativeModules.NativeEventEmitter;
const	scannerListener	=	new	NativeEventEmitter(cmb);

and	then	add	listeners	for	each	event	you	want	to	handle:

scannerListener.addListener(
						CMBReader.EVENT.ReadResultReceived,
						(result)	=>	{
								if	(result.goodRead	==	true){
	 								Alert.alert(
	 										result.symbologyString,
	 										result.readString
);
								}
						}
);

	

Here	are	all	the	events	that	the	cmbSDK	module	can	emit:

CMBReader.EVENT.ReadResultReceived

https://cmbdn.cognex.com/knowledge/mdm-solutions/ios/adding-mdm-reporting-to-an-application
https://reactjs.org/docs/react-component.html

t it le:	React	Native	(v2.4.x)	;	ver:	2.7.x 12	/	12

CMBReader.EVENT.AvailabilityChanged
CMBReader.EVENT.ConnectionStateChanged
CMBReader.EVENT.ScanningStateChanged
CMBReader.EVENT.CommandCompleted

	

CMBReader.EVENT.ReadResultReceived
This	event 	is	t riggered	whenever	a	scan	result 	is	received.	A	result 	is	a
CMBReadResult s	object 	(see	CMBReadResult s	class	ref erence).

CMBReader.EVENT.Availabilit yChanged
This	event 	is	t riggered	when	the	availabilit y	of 	the	ReaderDevice	changes
(example:	when	the	MX	Mobile	Terminal	has	connected	or	disconnected	the
cable,	or	has	turned	on	or	of f).	The	result 	is	an	int 	containing	the
availabilit y	inf ormat ion.

CMBReader.EVENT.Connect ionStateChanged
This	event 	is	t riggered	when	the	connect ion	state	of 	the	ReaderDevice
changes.	The	result 	is	an	int 	containing	the	connect ion	inf ormat ion.

CMBReader.EVENT.ScanningStateChanged
This	event 	is	t riggered	when	the	scanner	state	of 	the	ReaderDevice	changes.
The	result 	is	a	boolean	that 	is	t rue	if 	the	scanning	started,	or	f alse	if 	it
stopped.

CMBReader.EVENT.CommandCompleted
This	event 	is	t riggered	when	a	ReaderDevice	command	has	completed.	The
result 	contains	the	f ollowing	inf ormat ion:

commandID	(String,	the	same	param	that	was	used	to	send	the	command)
eventType	(String,	ex:	isSymbologyEnabled)
command	(String,	the	command	that	was	sent)
success	(Boolean)
status	(nullable,	int,	command	status	(See	CDMResponse.h))
message	(nullable,	String,	command	payload)
image	(nullable,	base64	String	representation	of	the	scan	image)
response	(nullable,	Boolean,	command	response,	ex:	isSymbologyEnabled	will	return	true/false	here)

	

https://cmbdn.cognex.com/cmbSDK/programmers-reference-ios/html/interface_c_m_b_read_results.html

