
t it le:	Xamarin	(v2.4.x)	;	ver:	2.7.x 1	/	74

Xamarin	(v2.4.x)

Introduct ion

Xamarin	is	unique	by	offering	a	single	language	–	C#,	class	library,	and	runtime	that
works	across	all	three	mobile	platforms	of	iOS,	Android,	and	Windows	Phone	(Windows
Phone’s	native	language	is	already	C#),	while	still	compiling	native	(non-interpreted)
applications	that	are	performant	enough	even	for	demanding	games.

Each	of	these	platforms	has	a	different	feature	set	and	each	varies	in	its	ability	to	write
native	applications	–	that	is,	applications	that	compile	down	to	native	code	and	that
interop	fluently	with	the	underlying	Java	subsystem.	For	example,	some	platforms	only
allow	apps	to	be	built	in	HTML	and	JavaScript,	whereas	some	are	very	low-level	and	only
allow	C/C++	code.	Some	platforms	don’t	even	utilize	the	native	control	toolkit.

Xamarin	is	unique	in	that	it	combines	all	of	the	power	of	the	native	platforms	and	adds	a
number	of	powerful	features	of	its	own,	including:

1.	 Complete	Binding	f or	the	underlying	SDKs	–	Xamarin	contains	bindings	for
nearly	the	entire	underlying	platform	SDKs	in	both	iOS	and	Android.	Additionally,
these	bindings	are	strongly-typed,	which	means	that	they’re	easy	to	navigate	and
use,	and	provide	robust	compile-time	type	checking	and	during	development.	This
leads	to	fewer	runtime	errors	and	higher	quality	applications.

2.	 Object ive-C,	Java,	C,	and	C++	Interop	–	Xamarin	provides	facilities	for	directly
invoking	Objective-C,	Java,	C,	and	C++	libraries,	giving	you	the	power	to	use	a	wide
array	of	3rd	party	code	that	has	already	been	created.	This	lets	you	take	advantage
of	existing	iOS	and	Android	libraries	written	in	Objective-C,	Java	or	C/C++.	Additionally,
Xamarin	offers	binding	projects	that	allow	you	to	easily	bind	native	Objective-C	and
Java	libraries	using	a	declarative	syntax.

3.	 Modern	Language	Const ructs	–	Xamarin	applications	are	written	in	C#,	a	modern
language	that	includes	significant	improvements	over	Objective-C	and	Java	such	as
Dynamic	Language	Features	,	Functional	Constructs	such	as	Lambdas	,	LINQ	,	Parallel
Programming	features,	sophisticated	Generics	,	and	more.

4.	 Amazing	Base	Class	Library	(BCL)	–	Xamarin	applications	use	the	.NET	BCL,	a
massive	collection	of	classes	that	have	comprehensive	and	streamlined	features
such	as	powerful	XML,	Database,	Serialization,	IO,	String,	and	Networking	support,	just
to	name	a	few.	Additionally,	existing	C#	code	can	be	compiled	for	use	in	an
applications,	which	provides	access	to	thousands	upon	thousands	of	libraries	that	will
let	you	do	things	that	aren’t	already	covered	in	the	BCL.

5.	 Modern	Integrated	Development 	Environment 	(IDE)	–	Xamarin	uses	Xamarin
Studio	on	Mac	OS	X	and	Visual	Studio	on	Windows.	These	are	both	modern	IDE’s	that
include	features	such	as	code	auto	completion,	a	sophisticated	Project	and	Solution
management	system,	a	comprehensive	project	template	library,	integrated	source
control,	and	many	others.

6.	 Mobile	Cross	Plat f orm	Support 	–	Xamarin	offers	sophisticated	cross-platform
support	for	the	three	major	mobile	platforms	of	iOS,	Android,	and	Windows	Phone.
Applications	can	be	written	to	share	up	to	90%	of	their	code,	and	our	Xamarin.Mobile

t it le:	Xamarin	(v2.4.x)	;	ver:	2.7.x 2	/	74

library	offers	a	unified	API	to	access	common	resources	across	all	three	platforms.	This
can	significantly	reduce	both	development	costs	and	time	to	market	for	mobile
developers	that	target	the	three	most	popular	mobile	platforms.

How	Does	Xamarin	Work?

Xamarin	offers	two	commercial	products:	Xamarin.iOS	and	Xamarin.Android.	They’re	both
built	on	top	of	Mono,	an	open-source	version	of	the	.NET	Framework	based	on	the
published	.NET	ECMA	standards.	Mono	has	been	around	almost	as	long	as	the	.NET
framework	itself,	and	runs	on	nearly	every	imaginable	platform	including	Linux,	Unix,
FreeBSD,	and	Mac	OS	X.

On	iOS,	Xamarin’s	Ahead-of-Time 	(AOT)	Compiler	compiles	Xamarin.iOS	applications
directly	to	native	ARM	assembly	code.	On	Android,	Xamarin’s	compiler	compiles	down	to
Intermediate	Language	(IL),	which	is	then	Just-in-Time 	(JIT)	compiled	to	native	assembly
when	the	application	launches.

In	both	cases,	Xamarin	applications	utilize	a	runtime	that	automatically	handles	things
such	as	memory	allocation,	garbage	collection,	underlying	platform	interop,	etc.

Xamarin.Forms

Xamarin.Forms	is	a	framework	that	allows	developers	to	rapidly	create	cross	platform	user
interfaces.	It	provides	it's	own	abstraction	for	the	user	interface	that	will	be	rendered
using	native	controls	on	iOS,	Android,	Windows,	or	Windows	Phone.	This	means	that
applications	can	share	a	large	portion	of	their	user	interface	code	and	still	retain	the
native	look	and	feel	of	the	target	platform.

Xamarin.Forms	allows	for	rapid	prototyping	of	applications	that	can	evolve	over	time	to
complex	applications.	Because	Xamarin.Forms	applications	are	native	applications,	they
don't	have	the	limitations	of	other	toolkits	such	as	browser	sandboxing,	limited	APIs,	or
poor	performance.	Applications	written	using	Xamarin.Forms	are	able	to	utilize	any	of	the
API’s	or	features	of	the	underlying	platform,	such	as	(but	not	limited	to)	CoreMotion,
PassKit,	and	StoreKit	on	iOS;	NFC	and	Google	Play	Services	on	Android;	and	Tiles	on
Windows.	In	addition,	it's	possible	to	create	applications	that	will	have	parts	of	their	user
interface	created	with	Xamarin.Forms	while	other	parts	are	created	using	the	native	UI
toolkit.

Xamarin.Forms	applications	are	architected	in	the	same	way	as	traditional	cross-platform
applications.	The	most	common	approach	is	to	use	Portable	Libraries	or	Shared	Projects	to
house	the	shared	code,	and	create	platform	specific	applications	that	will	consume	the
shared	code.

There	are	two	techniques	to	create	user	interfaces	in	Xamarin.Forms.	The	first	technique
is	to	create	UIs	entire ly	with	C#	source	code.	The	second	technique	is	to	use	Extensible
Application	Markup	Language	(XAML),	a	declarative	markup	language	that	is	used	to
describe	user	interfaces.	For	more	information	about	XAML,	see	XAML	Basics.

https://developer.xamarin.com/guides/cross-platform/application_fundamentals/pcl/
https://developer.xamarin.com/guides/cross-platform/application_fundamentals/shared_projects/
https://developer.xamarin.com/guides/xamarin-forms/user-interface/xaml-basics/

t it le:	Xamarin	(v2.4.x)	;	ver:	2.7.x 3	/	74

Instalat ion

To	start	developing	Xamarin	application	first	you	need	to	install	Visual	Studio	or	Xamarin
Studio	and	make	sure	to	include	all	necessary	Xamarin	components.	In	our	examples	we
will	use	Visual	Studio	to	show	you	how	to	develop	Xamarin	application	and	use	our	SDK.
Navigate	to	this	link	to	read	step	by	step	how	to	download	and	install	Visual	Studio	for
Xamarin	applications.

Xamarin.Android

Gett ing	Started

Open	Visual	Studio	and	follow	these	steps:

1.	Go	to	File	->	New	->	Project .

2.	Select	Android	App	(Xamarin),	set	project	name	and	from	templates	select	Blank
App

https://developer.xamarin.com/guides/cross-platform/getting_started/installation/

t it le:	Xamarin	(v2.4.x)	;	ver:	2.7.x 4	/	74

t it le:	Xamarin	(v2.4.x)	;	ver:	2.7.x 5	/	74

t it le:	Xamarin	(v2.4.x)	;	ver:	2.7.x 6	/	74

After	creating	a	blank	application,	create	all	resources	you	will	use	(icons,	images,	styles,
layouts,	etc.).	You	can	copy	them	from	our	sample.

Next	right	click	on	your	project	file ,	then	click	Properties	and	go	to	Android	Manifest
section.

Setup	your	Manifest	file 	(app	name,	app	icon,	minimum	and	maximum	android	versions),
make	sure	to	enable	Camera	permission	for	this	application.

t it le:	Xamarin	(v2.4.x)	;	ver:	2.7.x 7	/	74

	

Reference	cmbSDK

Now	we	need	to	reference	XamarinDataManLibrary.dll	in	order	to	use	the	cmbSDK.

t it le:	Xamarin	(v2.4.x)	;	ver:	2.7.x 8	/	74

Browse	and	find	XamarinDataManLibrary.dll	file 	and	add	as	reference	in	this	project.

Licensing	the	SDK

To	use	cmbSDK	for	barcode	scanning	with	a	mobile	device	without	an	MX	mobile	terminal,

t it le:	Xamarin	(v2.4.x)	;	ver:	2.7.x 9	/	74

you	need	to	install	a	license	key.	If	the	license	key	is	missing,	asterisks	will	appear
instead	of	scanned	results.

Contact	your	Cognex	Sales	Representative	for	information	on	how	to	obtain	a	license
key,	including	30-day	trial	licenses.

After	obtaining	your	license	key	there	is	two	ways	to	add	your	license	key	in	application.

The	first	one	is	to	implement	an	activation	directly	from	the	code	when	you	create	your
readerDevice:

...
if	(param_deviceClass	==	DataManDeviceClass.PhoneCamera)
{
																//**

																//	Create	a	camera	reader
																//
																//	NOTE:		if	we're	scanning	using	the	built-in	camera
																//							of	the	mobile	phone	or	tablet,	then	the	SDK	requires	a	license	key.	Refer	t
o
																//							the	SDK's	documentation	on	obtaining	a	license	key	as	well	as	the	methods	f
or
																//							passing	the	key	to	the	SDK	(in	this	example,	we're	relying	on	an	entry	in
																//							AndroidManifest--there	are	also	getPhoneCameraDevice	methods	where	it	can	b
e	passed
																//							as	a	parameter).
																//**

																readerDevice	=	ReaderDevice.GetPhoneCameraDevice(this,	param_cameraMode,	PreviewOpti
on.Defaults,	null,	"SDK_KEY");
}

and	second	is	to	add	the	following	line	in	the	AndroidManifest.xml	file 	of	your	application
under	the	application	tag:

<application>
							

					<meta-data	android:name="MX_MOBILE_LICENSE"	
										android:value="YOUR_MX_MOBILE_LICENSE"/>
</application>

	

Implement ing	SDK

1.	First	build	your	UI	according	to	your	needs,	but	considering	the	following	aspects:

t it le:	Xamarin	(v2.4.x)	;	ver:	2.7.x 10	/	74

You	have	to	decide	if	you	you	want	to	show	partial	or	a	full	screen	(that	is	the	default)
camera	preview.	You	need	a	ViewGroup	container	to	use	partial	preview,	for
example	Relat iveLayout .		No	additional	container	is	needed	for	full	screen
preview.	

Our	sample	app	(that	you	can	find	in	the	cmbSDK	bundle)	is	using	full	screen	preview.	To
change	the	sample	app	to	use	partial	view,	add	the	following	Relat iveLayout 	at	the
end	inside	main	RelativeLayout	in	act ivity_scanner.xml	file .	Use	this	layout	as	a
ViewGroup	parameter	in	reader	device	constructor	(getPhoneCameraDevice)	when
reader	device	is	initialized.

<RelativeLayout
								android:id="@+id/rlPreviewContainer"
								android:layout_width="match_parent"
								android:layout_height="200dp"
								android:layout_alignParentTop="true"	/>

To	display	the	last	scanned	image,	an	ImageView	container	is	needed.
	
To	display	the	scanned	result	as	a	text,	a	TextView	is	needed.

2.	Set	up	the	following	interfaces	to	monitor	the	connection	state	of	the	reader	and
receive	information	about	the	read	code:

public	class	ScannerActivity	:	AppCompatActivity,	IOnConnectionCompletedListener,	IReaderDeviceListe
ner,	IOnSymbologyListener,	DataManSystem.IOnResponseReceivedListener,
								ActivityCompat.IOnRequestPermissionsResultCallback	{

...

#region	ReaderDevice	listener	implementations

								//	This	is	called	when	a	MX-1xxx	device	has	became	available	(USB	cable	was	plugged,	or	MX	d
evice	was	turned	on),
								//	or	when	a	MX-1xxx	that	was	previously	available	has	become	unavailable	(USB	cable	was	unp
lugged,	turned	off	due	to	inactivity	or	battery	drained)
								public	void	OnAvailabilityChanged(ReaderDevice	reader)
								{
												if	(reader.GetAvailability()	==	Availability.Available)
												{
																ConnectToReaderDevice();
												}
												else	if	(reader.GetAvailability()	==	Availability.Unavailable)
												{
																AlertDialog.Builder	alert	=	new	AlertDialog.Builder(this);
																alert
																				.SetTitle("Device	became	unavailable")
																				.SetPositiveButton("OK",	(sender,	e)	=>	{	})
																				.Create()
																				.Show();
												}

t it le:	Xamarin	(v2.4.x)	;	ver:	2.7.x 11	/	74

								}

								//	The	connect	method	has	completed,	here	you	can	see	whether	there	was	an	error	with	establ
ishing	the	connection	or	not
								public	void	OnConnectionCompleted(ReaderDevice	readerDevice,	Throwable	error)
								{
												//	If	we	have	valid	connection	error	param	will	be	null,
												//	otherwise	here	is	error	that	inform	us	about	issue	that	we	have	while	connecting	to	r
eader	device
												if	(error	!=	null)
												{

																//	ask	for	Camera	Permission	if	necessary
																if	(error	is	CameraPermissionException)
																				ActivityCompat.RequestPermissions(((ScannerActivity)this),	new	string[]	{	Androi
d.Manifest.Permission.Camera	},	REQUEST_PERMISSION_CODE);

																UpdateUIByConnectionState();
												}
								}

								//	This	is	called	when	a	connection	with	the	readerDevice	has	been	changed.
								//	The	readerDevice	is	usable	only	in	the	"ConnectionState.Connected"	state
								public	void	OnConnectionStateChanged(ReaderDevice	reader)
								{
												ClearResult();
												if	(reader.ConnectionState	==	ConnectionState.Connected)
												{
																//	We	just	connected,	so	now	configure	the	device	how	we	want	it
																ConfigureReaderDevice();
												}

												isScanning	=	false;
												UpdateUIByConnectionState();
								}

								//	This	is	called	after	scanning	has	completed,	either	by	detecting	a	barcode,	canceling	the
	scan	by	using	the	on-screen	button	or	a	hardware	trigger	button,	or	if	the	scanning	timed-out
								public	void	OnReadResultReceived(ReaderDevice	readerDevice,	ReadResults	results)
								{
												ClearResult();

												if	(results.SubResults	!=	null	&&	results.SubResults.Count	>	0)
												{
																foreach	(ReadResult	subResult	in	results.SubResults)
																{
																				CreateResultItem(subResult);
																}
												}
												else	if	(results.Count	>	0)
												{
																CreateResultItem(results.GetResultAt(0));
												}

												isScanning	=	false;
												btnScan.Text	=	"START	SCANNING";
												resultListAdapter.NotifyDataSetChanged();
								}

								#endregion

t it le:	Xamarin	(v2.4.x)	;	ver:	2.7.x 12	/	74

..

3.	Instantiate	a	ReaderDevice	object.

Using	the	MX	Reader

Initialize	a	Reader	Device	object	for	MX	readers	using	the	following	factory	method:

//***
//	Create	an	MX-1xxx	reader		(note	that	no	license	key	in	needed)
//***
readerDevice	=	ReaderDevice.GetMXDevice(this);

//Listen	when	a	MX	device	has	became	available/unavailable
if	(!availabilityListenerStarted)
{
					readerDevice.StartAvailabilityListening();
					availabilityListenerStarted	=	true;
}

The	availability	of	the	MX	mobile	terminal	can	change	when	the	device	turns	on	or	off,	or
if	the	USB	cable	gets	connected	or	disconnected.	You	can	handle	those	changes	using
the	following	ReaderDeviceListener	interface	method:

public	void	OnAvailabilityChanged(ReaderDevice	reader)

	

Using	the	Camera	Reader

You	are	recommended	to	use	an	MX	mobile	terminal	to	scan	barcodes.	However,
cmbSDK	also	supports	using	the	built-in	camera	of	a	mobile	device.	This	includes	the
support	of	optional	external	aimers	or	illumination,	and	the	customization	of	the	live-
stream	preview's	appearance.

To	scan	barcodes	using	the	built-in	camera	of	a	mobile	device,	initialize	the	ReaderDevice
object	using	the	getPhoneCameraDevice	static	method.	The	camera	reader	has	several
options	when	initialized.	The	following	parameters	are	required:

Context
CameraMode

t it le:	Xamarin	(v2.4.x)	;	ver:	2.7.x 13	/	74

PreviewOption
ViewGroup
RegistrationKey
CustomData

The	Context	parameter	provides	a	reference	to	the	activity	you	are	currently	in.

The	CameraMode	parameter	is	of	type	CameraMode	defined	in	CameraMode.java	and
it	accepts	one	of	the	values	listed	in	the	following	table.

These	modes	provide	the	following	default	settings	for	the	reader:

The	zoom	feature	is	available	and	a	button	to	control	it	is	visible	on	the	live-stream
preview	(if	displayed).
The	simulated	hardware	trigger	(volume	control	buttons)	is	disabled.
When	StartScanning()	is	called,	the	decoding	process	is	started.

Based	on	the	selected	mode,	additional	illumination	options	and	behaviors	are	set,	also
listed	in	the	table.

VALUE DESCRIPT ION ILLUMINATION
LIVE-

STREAM
PREVIEW

NO_AIMER

Initializes	the	reader
to	use	a	live-stream
preview	on	the
mobile	device

screen	so	the	user
can	position	the
barcode	within	the
camera’s	field	of
view	for	detection
and	decoding.	Use
this	mode	if	the

mobile	device	does
not	have	an	aiming

accessory.

Illumination	is
available	and	a
button	to	control
it	is	visible	on
the	live-stream

preview.
Displayed

If	commands	are
sent	to	the

reader	for	aimer
control,	they	are

ignored.

Initializes	the	reader
to	use	a	passive
aimer.	No	live-

Illumination	is	not
available,	and
the	live-stream
preview	does
not	have	an
illumination
button.

If	commands	are

t it le:	Xamarin	(v2.4.x)	;	ver:	2.7.x 14	/	74

PASSIVE_AIMER stream	preview	is
available	on	the

device	screen	in	this
mode,	since	an
aiming	pattern	is

projected.

sent	to	the
reader	for
illumination

control,	they	are
ignored	because
it	is	assumed	in
this	mode	that
the	built-in	LED
of	the	mobile
device	is	being
used	for	the

aimer.

Not
Displayed

FRONT_CAMERA

Initializes	the	reader
to	use	the	front
camera	of	the

mobile	device,	if
available.	Use	this
configuration	with
care	because	most
front	facing	cameras
do	not	have	auto

focus	and
illumination,	and

provide	significantly
lower	resolution

images.	Illumination
is	not	available	in

this	mode.

The	front	camera
is	used.

Displayed

Illumination	is	not
available	and	the

live-stream
preview	does
not	have	an
illumination
button.

If	commands	are
sent	to	the

reader	for	aimer
or	illumination

control,	they	are
ignored.

The	PreviewOption	parameter	is	of	type 	PreviewOption	defined	in	PreviewOpt ion.java,
and	is	used	to	change	the	reader’s	default	values	or	override	defaults	derived	from	the
selected	CameraMode.	You	can	specify	the	following	options:

VALUE DESCRIPT ION

DEFAULTS Accept	all	defaults	set	by	the
CameraMode.

NO_ZOOM_BUTTON
Hides	the	zoom	button	on	the	live-stream

preview,	preventing	the	user	from
adjusting	the	zoom	of	the	mobile	device

camera.

Hides	the	illumination	button	on	the	live-

t it le:	Xamarin	(v2.4.x)	;	ver:	2.7.x 15	/	74

NO_ILLUMINATION_BUTTON stream	preview,	preventing	the	user	from
toggling	the	illumination.

HARDWARE_TRIGGER

Enables	a	simulated	hardware	trigger	(the
volume	down	button)	for	starting	scanning
on	the	mobile	device.	This	button	only

starts	scanning	when	pressed,	it	does	not
need	to	be	held	like	a	purpose-built
scanner’s	trigger,	and	pressing	it	a

second	time	does	not	stop	the	scanning
process.

PAUSED

If	using	a	live-stream	preview,	the
preview	is	displayed	when	the

startScanning()	method	is	called,	but	the
reader	does	not	start	decoding	until	the
user	presses	the	on-screen	button	to

start	the	scanning	process.

ALWAYS_SHOW
Forces	a	live-stream	preview	to	be
displayed	even	if	an	aiming	mode	is

selected	(for	example	CameraMode	==
PASSIVE_AIMER).

HIGH_RESOLUTION

Uses	the	device	camera	in	higher
resolution,	changing	the	default	1280x720
resolution	to	1920x1080	on	devices	that
support	it,	and	to	the	default	resolution	on
devices	that	do	not	support	it.	This	can
help	with	scanning	small	barcodes,	but
increases	the	decoding	time	as	there	is
more	data	to	process	in	each	frame.

HIGH_FRAME_RATE
Uses	the	device's	camera	in	60	FPS

instead	of	the	default	30	FPS	to	provide	a
smoother	camera	preview.

SHOW_CLOSE_BUTTON Show	close	button	in	partial	view.

The	ViewGroup	(optional)	parameter	specifies	the	container	for	the	live-stream	preview.
If	the	parameter	is	left	null,	a	full	screen	preview	is	used.

The	RegistrationKey	(optional)	parameter	is	used	to	license	your	SDK	with	license	key
that	you	have

The	CustomData	(optional)	parameter	is	used	for	custom	tracking

Example

t it le:	Xamarin	(v2.4.x)	;	ver:	2.7.x 16	/	74

Create	a	reader	with	no	aimer,	no	zoom	button,	and	using	a	soft	trigger:

readerDevice	=	ReaderDevice.GetPhoneCameraDevice(this,	CameraMode.NoAimer,	PreviewOption.NoZoomButto
n	|	PreviewOption.Paused);

This	starts	a	preview	with	the	scanner	paused	and	a	soft	trigger	button	to	toggle
scanning.	After	pressing	the	soft	trigger	button,	the	expected	preview	look	is	this:

The	viewfinder	in	the	image	has	an	active	scanning	surface	as	a	result	of	having	set
active	symbologies.	For	more	details,	see	Enabling	Symbologies.

Request ing	Camera	Permission	for	Phone	Camera	Scanner

From	Android	6.0	and	above	you	need	to	request	permission	from	the	user	to	access	the
built-in	camera	of	the	mobile	device.

If	the	camera	cannot	be	opened	due	to	permission	issues,	the

https://cmbdn.cognex.com/knowledge/xamarin/xamarin.android/enabling-symbologies

t it le:	Xamarin	(v2.4.x)	;	ver:	2.7.x 17	/	74

onConnectionCompleted(readerDevice,	error)	callback	contains	a
CameraPermissionException	in	the	error	parameter.	You	can	check	for	this	exception	type
with	the	instanceof	operator	and	request	permission	within	the	Activity.

if	(error	is	CameraPermissionException)
						ActivityCompat.RequestPermissions(((ScannerActivity)	this),	new	string[]	{	Android.Manifest.Pe
rmission.Camera	},	REQUEST_PERMISSION_CODE);

You	need	to	implement	the	ActivityCompat.IOnRequestPermissionResultCallback	interface
in	your	Activity	to	catch	the	user	permission	result.
To	handle	user	response	in	onRequestPermissionsResult(…),	you	can	use	the	following
code	to	retry	connecting	to	the	phone	camera:

							public	override	void	OnRequestPermissionsResult(int	requestCode,	string[]	permissions,	[Gener
atedEnum]	Permission[]	grantResults)
								{
												//	Check	result	from	permission	request.	If	it	is	allowed	by	the	user,	connect	to	reader
Device
												if	(requestCode	==	REQUEST_PERMISSION_CODE)
												{
																if	(grantResults.Length	>	0	&&	grantResults[0]	==	Permission.Granted)
																{
																				if	(readerDevice	!=	null	&&	readerDevice.ConnectionState	!=	ConnectionState.Conn
ected)
																								readerDevice.Connect(this);
																}
																else
																{
																				if	(ActivityCompat.ShouldShowRequestPermissionRationale(((ScannerActivity)this),
	Android.Manifest.Permission.Camera))
																				{
																								AlertDialog.Builder	builder	=	new	AlertDialog.Builder(this)
																																.SetMessage("You	need	to	allow	access	to	the	Camera")
																																.SetPositiveButton("OK",	(sender,	e)	=>
																																{
																																				ActivityCompat.RequestPermissions(this,	new	string[]	{	Android.M
anifest.Permission.Camera	},	REQUEST_PERMISSION_CODE);
																																})
																																.SetNegativeButton("Cancel",	(sender,	e)	=>	{	});
																								AlertDialog	dialog	=	builder.Create();
																								dialog.Show();
																				}
																}
												}
								}

	

Connect ing	to	the	Reader	Device

t it le:	Xamarin	(v2.4.x)	;	ver:	2.7.x 18	/	74

Before	connecting,	set	the	IReaderDeviceListener	object	to	receive	events:

readerDevice.SetReaderDeviceListener(this);

Additionally,	you	can	enable	sending	the	last	triggered	image	and	SVG	from	the	reader:

readerDevice.EnableImage(true);
readerDevice.EnableImageGraphics(true);

Invoke	the	connect	method	after	initializ ing	the	ReaderDevice	and	setting	a	listener
method	to	handle	responses	from	the	reader.	The	connect	method	takes
IOnConnectionCompletedListener	as	parameter:

	//Make	sure	the	device	is	turned	ON	and	ready
readerDevice.Connect(ScannerActivity.this);

The	following	listener	methods	are	called	with	the	new	ReaderDevice	status	information:

public	void	onConnectionStateChanged(ReaderDevice	reader);
public	void	onConnectionCompleted(ReaderDevice	reader,	Throwable	err)

The	onConnectionCompleted	method	passed	as	a	parameter	of	connect	is	also	invoked
as	the	connection	process	completes.	If	there	was	a	connection	error,	this	method
provides	a	Throwable	object.

Scanning	Barcodes

After	connecting	to	the	scanning	device,	you	may	need	to	change	some	of	its	settings.
CmbSDK	provides	a	set	of	high-level	and	device-independent	APIs	for	setting	and
retrieving	the	current	configuration	of	the	device.

You	can	start	scanning	barcodes	with	a	properly	configured	reader	by	calling	the
StartScanning	method	from	your	ReaderDevice	class:

readerDevice.StartScanning();

t it le:	Xamarin	(v2.4.x)	;	ver:	2.7.x 19	/	74

If	using	an	MX	mobile	terminal,	you	can	press	a	trigger	button	on	the	device	to	turn
the	scanner	on	and	read	a	barcode.
If	using	the	camera	reader,	cmbSDK	starts	the	camera,	displays	the	configured	live-
stream	preview,	and	begins	analyzing	the	frames	from	the	video	stream,	looking	for	a
configured	barcode	symbology.

You	can	stop	scanning	with	the	following:

readerDevice.StopScanning();

Scanning	stops	under	one	of	the	following	conditions:

The	reader	found	and	decoded	a	barcode.
You	released	the	trigger	or	pressed	the	stop	button	on	the	live-stream	preview
screen.
The	camera	reader	timed	out	without	finding	a	barcode.
The	application	calls	the	StopScanning()	method.

When	a	barcode	is	decoded	successfully,	you	receive	a	ReadResults	iterable	result
collection	object	in	the	ReaderDevice	listener	method.	The	onReadResultReceived
listener	method	is	invoked	either	because	the	reader	decoded	a	barcode	or	the	scanning
process	was	complete.

Example

								//	This	is	called	after	scanning	has	completed,	either	by	detecting	a	barcode,	canceling	the
	scan	by	using	the	on-screen	button	or	a	hardware	trigger	button,	or	if	the	scanning	timed-out
								public	void	OnReadResultReceived(ReaderDevice	readerDevice,	ReadResults	results)
								{
												ClearResult();

												if	(results.SubResults	!=	null	&&	results.SubResults.Count	>	0)
												{
																foreach	(ReadResult	subResult	in	results.SubResults)
																{
																				CreateResultItem(subResult);
																}
												}
												else	if	(results.Count	>	0)
												{
																CreateResultItem(results.GetResultAt(0));
												}

												isScanning	=	false;
												btnScan.Text	=	"START	SCANNING";
												resultListAdapter.NotifyDataSetChanged();
								}

t it le:	Xamarin	(v2.4.x)	;	ver:	2.7.x 20	/	74

	

Enabling	Symbologies

CmbSDK	does	not	enable	any	symbologies	by	default	for	barcode	reading	with	the	built-
in	camera	of	the	mobile	device.	You	must	enable	all	barcode	symbologies	your
application	needs	to	scan	to	achieve	optimal	scanning	performance.

Individual	symbologies	can	be	enabled	using	the	following	method	of	the	ReaderDevice
class:

public	void	SetSymbologyEnabled(final	Symbology	symbology,	final	boolean	enable,	final	IOnSymbologyL
istener	listener)
readerDevice.SetSymbologyEnabled(Symbology.Datamatrix,	true,	null);
readerDevice.SetSymbologyEnabled(Symbology.UpcEan,	true,	null);

All	symbologies	used	for	the	symbology	parameter	in	this	method	can	be	found	in
ReaderDevice.java.

Examples

	/*	Enable	QR	scanning	*/
readerDevice.SetSymbologyEnabled(Symbology.Qr,	true,	null);

You	can	also	use	the	same	method	to	disable	symbologies:

/	*	Disable	Code	25	scanning	*/	readerDevice.SetSymbologyEnabled(Symbology.C25,	false,	null);

You	can	implement	the	method	for	IOnSymbologiesListener	to	check	the	result	of	the
symbology	change:

public	void	onSymbologyEnabled(ReaderDevice	reader,	Symbology	symbology,	Java.Lang.Boolean	enabled,	
Throwable	error)	{
if	(error	!=	null)	{
/*	Unsuccessful
probably	the	symbology	is	unsupported	by	the	current	device,	or	there	is	a	problem	with	the	connecti
on	between	the	readerDevice	and	MX	device	*/
}	else	{
//	Success	}
}

t it le:	Xamarin	(v2.4.x)	;	ver:	2.7.x 21	/	74

	

Illuminat ion	Control

If	your	reader	device	is	equipped	with	illumination	lights,	you	can	control	them:	when
scanning	starts,	you	can	turn	them	on	or	off.	Use	the	following	method	of	your	Reader
Device	object:

readerDevice.SetLightsOn(true,	null);

You	can	implement	the	interface	method	for	IOnLightsListener,	which	is	the	second
parameter	of	the	method.

public	class	ScannerActivity	:	AppCompatActivity,	IOnLightsListener	{

public	void	onLightsOnCompleted(ReaderDevice	reader,	Java.Lang.Boolean	on,	Throwable	error)	{
if	(error	!=	null)	{	//	Unsuccessful
}	else	{
//	Success
}}

Not	all	devices	and	device	modes	support	illumination	control.

Camera	Zoom	Sett ings

If	the	built-in	camera	of	a	mobile	device	is	used	as	the	reader	device,	you	can	configure
zoom	levels	and	how	they	are	used.	There	are	three	zoom	levels:

normal:	not	zoomed	(100%)
level	1	zoom	(150%	on	Android	by	default)
level	2	zoom	(300%	on	Android	by	default)

The	SET	CAMERA.ZOOM-PERCENT	[100-MAX]	[100-MAX]	command	is	for	configuring	how
far	the	two	levels	zoom	in	percentage.	100	is	not	zoomed	and	MAX	(goes	up	to	1000)
zooms	as	far	as	the	device	is	capable	of.	The	first	argument	is	used	for	setting	level	1
zoom,	and	the	second	for	level	2	zoom.

You	can	check	the	current	zoom	setting	with	the	GET	CAMERA.ZOOM-PERCENT	command,
which	returns	two	values:	level	1	and	level	2	zoom.

t it le:	Xamarin	(v2.4.x)	;	ver:	2.7.x 22	/	74

Example

readerDevice.DataManSystem.SendCommand("SET	CAMERA.ZOOM-PERCENT	250	500");

Note:	The	camera	needs	to	be	started	within	cmbSDK	at	least	once	to	have	a	valid
maximum	zoom	level.	It	means	that	if	you	set	the	zoom	level	to	1000	and	the	device
can	only	go	up	to	600,	the	GET	CAMERA.ZOOM-PERCENT	command	returns	1000	as
long	as	camera	is	not	opened,	but	it	returns	600	afterwards.

GET/SET	CAMERA.ZOOM	0-2	is	another	command	that	sets	the	zoom	level	or	returns	the
actual	setting.	Possible	values	for	the	SET	command	are:

0	-	normal	(not	zoomed)
1	-	level	1	zoom
2	-	level	2	zoom

You	can	call	this	command	before	or	even	during	scanning,	and	the	zoom	goes	up	to	the
configured	level.	If	scanning	is	finished,	the	value	is	reset	to	normal	behavior	(0).

Example

readerDevice.DataManSystem.SendCommand("SET	CAMERA.ZOOM	2");

	

Camera	Overlay	Customizat ion

When	using	the	mobile	device's	camera,	cmbSDK	allows	you	to	see	the	camera	preview
inside	a	preview	container	or	in	full	screen.	This	preview	also	contains	a	customizable
overlay.	The	cmbSDK	camera	overlay	features	buttons	for	zooming,	flashing	and	closing
the	scanner,	and	a	progress	bar	indicating	the	scan	timeout.

To	use	the	legacy	camera	overlay	originally	used	in	cmbSDK	v2.0.x	and	ManateeWorks
SDK,	use	this	property	from	MWOverlay	before	initializ ing	the	readerDevice:

MWOverlay.OverlayMode	=	MWOverlay.OverlayModeEnum.OmLegacy;

The	customization	of	the	legacy	camera	overlay	is	limited,	so	it	is	recommended	to

t it le:	Xamarin	(v2.4.x)	;	ver:	2.7.x 23	/	74

use	the	cmbSDK	overlay.

When	using	the	cmbSDK	overlay:

1.	 Copy	the	layout	files	from	the	Resources/layout	directory	into	your	project	and	modify
them.	Use	cmb_scanner_part ial_view.xml	if	scanning	is	started	inside	a	container
(partial	view),	and	use	cmb_scanner_view.xml	if	scanning	is	started	in	full	screen.

2.	 Modify	the	layout	according	to	your	needs.	For	example,	you	can	change	the	sizes,
positions	or	color	of	the	views,	remove	views	and	add	your	own	views,	like	an	overlay
image.

CmbSDK	accesses	the	views	it	uses	(zoom,	flash,	close	buttons,	the	view	used	for
drawing	lines	on	the	corners,	and	the	progress	bar)	with	the	android:tag	attribute.	Do
not	change	the	android:tag	attribute,	otherwise	cmbSDK	cannot	recognize	the	views
and	continues	to	function	as	if	they	are	removed.

Both	the	cmbSDK	and	the	legacy	overlay	allow	you	to	change	the	images	used	on	the
zoom	and	flash	buttons	if	your	images	have	the	same	name	as	the	names	cmbSDK
uses.	You	can	find	the	images	and	names	used	in	cmbSDK	in	the	Resources/drawable-
mdpi	and	drawable-hdpi	directories.	While	the	other	resolutions	are	optional,	these	two
directories	must	contain	your	images	with	the	correct	names	so	that	cmbSDK	displays	the
proper	images.

Both	the	cmbSDK	and	the	legacy	overlay	allow	you	to	change	the	color	and	width	of	the
rectangle	that	is	displayed	when	a	barcode	is	detected.

Example:

MWOverlay.LocationLineColor	=	Color.Yellow;
MWOverlay.LocationLineWidth	=	6;

	

Advanced	Configurat ion	using	DataMan	Control	Commands

Cognex	scanning	devices	implement	DataMan	Control	Commands	(DMCC)	for	configuring
and	controlling	the	device.	Every	feature	of	the	device	can	be	controlled	using	this	text-
based	language.	The	API	provides	a	method	for	sending	DMC	commands	to	the	device.
Commands	exist	both	for	setting	and	querying	configuration	properties.	DMC	commands
are	same	for	all	platforms	and	frameworks.

The	Appendix	includes	the	complete	DMCC	reference	for	the	camera	reader.

The	DMCCs	for	MX	mobile	terminals	and	other	supported	devices	can	be	found	in

https://cmbdn.cognex.com/knowledge/cognex-mobile-barcode-sdk-for-android/appendix-dmcc-for-the-camera-reader

t it le:	Xamarin	(v2.4.x)	;	ver:	2.7.x 24	/	74

their	respective	manuals	available	through	Setup	Tool.

The	following	examples	show	different	DMCC	sent	to	the	device	for	more	advanced
configuration.

Examples

//Change	the	scan	direction	to	omnidirectional	
readerDevice.DataManSystem.SendCommand("SET	DECODER.1D-SYMBOLORIENTATION	0",	ScannerActivity.this);
//Change	live-stream	preview's	scanning	timeout	to	10	seconds	
readerDevice.DataManSystem.SendCommand("SET	DECODER.MAX-SCAN-TIMEOUT	10",	ScannerActivity.this);

You	can	also	invoke	DMCC	query	commands	and	receive	their	response	in	the
IOnResponseReceivedListener.onResponseReceived()	method.

//Get	the	type	of	device	connected	readerDevice.DataManSystem.SendCommand("GET	DEVICE.NAME",	this);

public	void	onResponseReceived(DataManSystem	dataManSystem,	DmccResponse	dmccResponse)	{
if	(dmccResponse.Error	!=	null)	{
//	Unsuccessful
Log.e("DMCC_ERR",	“GET	DEVICE.NAME	failed”,	dmccResponse.Error.Message);
}	else	{
//	Success	-	Use	the	following	result	fields:
//int	mResponseId	=	dmccResponse.ResponseId;
//String	mPayLoad	=	dmccResponse.PayLoad;
//byte[]	mBinaryData	=	dmccResponse.GetBinaryData();	
}	}

	

Resett ing	the	Configurat ion

NOTE:	This	section	includes	resetting	to	CmbSDK	defaults	and	does	not	include
instruction	on	resetting	to	factory	defaults.

CmbSDK	includes	a	method	for	resetting	the	device	to	its	default	settings.	In	case	of	an
MX	mobile	terminal,	the	default	setting	are	the	saved	configurations.	In	case	of	a	built-in
camera,	the	default	settings	are	the	defaults	identified	in	the	Appendix,	where	no
symbologies	are	enabled.

To	reset	the	device,	add:

https://cmbdn.cognex.com/knowledge/cognex-mobile-barcode-sdk-for-android/appendix-dmcc-for-the-camera-reader

t it le:	Xamarin	(v2.4.x)	;	ver:	2.7.x 25	/	74

readerDevice.ResetConfig(null);

When	using	an	MX	mobile	terminal,	there	are	three	states	that	we	can	distinguish:

Factory	defaults
Saved	configuration:	when	there	were	different	configurations	set	on	the	device	and
CONFIG.SAVE	DMCC	was	called.
Session	configuration:	when	you	make	changes	on	the	saved	configuration,	the
changes	are	valid	until	the	MX	Mobile	Terminal	is	rebooted.	If	it	is	rebooted,	it	has	the
saved	configuration	state.

	

You	can	monitor	the	completion	of	this	async	method	using	the	IOnResetConfigListener
interface,	which	is	an	optional	parameter.

public	class	ScannerActivity	:	AppCompatActivity,	IOnResetConfigListener	{

public	void	onResetConfigCompleted(ReaderDevice	reader,	Throwable	error)	{
if	(error	!=	null)	{	//	Unsuccessful
}	else	{
//	Success
}

	

Working	with	Results

When	a	barcode	is	successfully	read,	the	onReadResultReceived	method	creates	and
returns	a	ReadResult	object.	In	case	of	having	multiple	barcodes	successfully	read	on	a
single	image	or	frame,	multiple	ReadResult	objects	are	returned	in	the	ReadResult	object.

The	ReadResult	class	has	properties	describing	the	result	of	a	barcode	read:

IsGoodRead	(bool):	te lls	whether	the	read	was	successful	or	not
ReadSt ring	(string):	the	decoded	barcode	as	a	string
Image	(Bitmap):	the	image/frame	that	the	decoder	processed
ImageGraphics	(string):	the	boundary	path	of	the	barcode	as	SVG	data
Xml	(string):	the	raw	XML	that	the	decoder	returned
Symbology	(Symbology):	the	symbology	type	of	the	barcode.	This	enum	is	defined
in	ReaderDevice.java.

When	a	scanning	ends	with	no	successful	read,	a	ReadResult	is	returned	with	the
IsGoodRead	property	set	to	false.

t it le:	Xamarin	(v2.4.x)	;	ver:	2.7.x 26	/	74

To	enable	the	Image	and	ImageGraphics	properties	being	filled	in	the	ReadResult	object,
set	the	corresponding	EnableImage()	and/or	EnableImageGraphics()	properties	of	the
ReaderDevice	object.

To	access	the	raw	bytes	from	the	scanned	barcode,	you	can	use	the	XML	property.	The
bytes	are	stored	as	a	Base64	string	under	the	"full_string"	tag.

Image	Results

The	image	and	SVG	results	are	disabled	by	default,	which	means	that	when	scanning,
the	ReadResults	do	not	contain	any	data	in	the	corresponding	properties.

To	enable	image	results,	invoke	the	EnableImage()	method	from	the	ReaderDevice	object:

readerDevice.EnableImage(true);

To	enable	SVG	results,	invoke	the	EnableImageGraphics()	method	on	ReaderDevice
object:

readerDevice.EnableImageGraphics(true);	

	

Handling	Disconnects

If	a	device	disconnects	due	to	low	battery	condition	or	manual	cable	disconnection,	it	can
be	detected	by	the	onConnectionStateChanged()	method	of	the	IReaderDeviceListener
interface.

Note:	The	onAvailabilityChanged()	method	of	IReaderDeviceListener	is	also	called
when	the	device	becomes	physically	unavailable.	It	means	that	(re)connection	is	not
possible.	Always	check	the	GetAvailability()	method	of	the	ReaderDevice	object
before	trying	to	call	the	Connect()	method.

Xamarin.iOS

Gett ing	Started

t it le:	Xamarin	(v2.4.x)	;	ver:	2.7.x 27	/	74

Open	Visual	Studio	and	follow	this	steps:

1.	Go	to	File	->	New	->	Project .

2.	Select	iOS	App	(Xamarin)	,	set	project	name	and	from	templates	select	Blank	App

t it le:	Xamarin	(v2.4.x)	;	ver:	2.7.x 28	/	74

After	creating	a	blank	application,	create	all	resources	you	will	use	(images,	storyboards,
controllers,	etc.).	You	can	copy	them	from	our	sample.

Next	open	your	Inf o.plist 	file 	and	set	some	project	properties	for	your	needs	(app
name,	deployment	target,	main	interface,	etc..).

Important	thing	here	is	to	add	Camera	permission	for	this	app.	In	Visual	Studio	there	is
no	options	to	add	this	permission	from	here.	You	need	to	open	your	Inf o.plist 	file 	in
some	text	editor	and	add	these	lines:

<key>NSCameraUsageDescription</key>
<string>Camera	used	for	scanning</string>

t it le:	Xamarin	(v2.4.x)	;	ver:	2.7.x 29	/	74

If	you	use	MX	Device	as	reader	device	add	this	protocols	in	Info.plist:

<key>UISupportedExternalAccessoryProtocols</key>
<array>
		<string>com.cognex.dmcc</string>
		<string>com.demo.data</string>
</array>

and	please	check	this	section	before	uploading	your	app	on	the	App	Store:	Getting	your
MX	Mobile	Terminal	Enabled	App	into	the	App	Store

Reference	cmbSDK

Now	we	need	to	reference	XamarinDataManLibrary.dll	in	order	to	use	the	cmbSDK.

Browse	and	find	XamarinDataManLibrary.dll	file 	and	add	it	as	a	reference	in	this
project.

https://cmbdn.cognex.com/knowledge/-cognex-mobile-barcode-sdk-for-ios/getting-your-mx-mobile-terminal-enabled-app-into-the-app-store

t it le:	Xamarin	(v2.4.x)	;	ver:	2.7.x 30	/	74

If	you	plan	to	use	your	application	on	devices	with	iOS	lower	than	12.2	extra	steps	are
required:

Add	Swift	dylib	dependencies	for	runtime	support.	Starting	from	iOS	12.2	and	Swift
5.1,	the	language	became	ABI	(application	binary	interface)	stable	and	compatible.
That's	why	any	application	targeting	a	lower	iOS	version	needs	to	include	Swift	dylibs
dependencies	used	by	the	framework.	Use	the	SwiftRuntimeSupport	NuGet	package
to	automatically	include	required	dylib	dependencies	into	the	resulting	application
package.
Add	Swif tSupport 	folder	with	signed	dylibs,	which	is	validated	by	the	AppStore
during	the	uploading	process.	The	package	should	be	signed	and	distributed	to	the
AppStore	connect	using	Xcode	tools,	otherwise,	it	will	be	automatically	re jected.

Note:	This	package	works	only	on	real	devices.	You	won't	be	able	to	test	your	application
on	simulators	with	an	iOS	version	lower	than	12.2.

Licensing	the	SDK

To	use	cmbSDK	for	barcode	scanning	with	a	mobile	device	without	an	MX	mobile	terminal,
you	need	to	install	a	license	key.	If	the	license	key	is	missing,	asterisks	will	appear
instead	of	scanned	results.

Contact	your	Cognex	Sales	Representative	for	information	on	how	to	obtain	a	license
key,	including	30-day	trial	licenses.

After	obtaining	your	license	key	there	is	two	ways	to	add	your	license	key	in	application.

The	first	one	is	to	implement	an	activation	directly	from	the	code	when	you	create	your
readerDevice:

//***
//	Create	a	camera	reader	(for	either	the	built-in	camera	or	an	MX-100)
//
//	NOTE:	if	we	are	connecting	to	a	MX-100	(cameraMode	==	kCDMCameraModeActiveAimer)	then
//							no	license	key	is	needed.	However,	if	we're	scanning	using	the	built-in	camera
//							of	the	mobile	phone	or	tablet,	then	the	SDK	requires	a	license	key.	Refer	to
//							the	SDK's	documentation	on	obtaining	a	license	key	as	well	as	the	methods	for
//							passing	the	key	to	the	SDK	(in	this	example,	we're	relying	on	an	entry	in

https://www.nuget.org/packages/Xamarin.iOS.SwiftRuntimeSupport/

t it le:	Xamarin	(v2.4.x)	;	ver:	2.7.x 31	/	74

//							plist.info--there	are	also	readerOfDeviceCamera	methods	where	it	can	be	passed
//							as	a	parameter).
//***
case	DataManDeviceClass.PhoneCamera:
					readerDevice	=	CMBReaderDevice.ReaderOfDeviceCameraWithCameraMode(cameraMode,	CDMPreviewOption.
Defaults,	null,	"SDK_KEY");
					break;

and	second	is	to	add	it	as	a	key	with	a	value	in	the	project	specific	Inf o.plist 	file:

<key>MX_MOBILE_LICENSE</key>
<string>Your	license	key</string>

	

Implement ing	SDK

1.	 First	build	your	UI	According	to	your	needs:

If	you	want	to	show	partial	camera	preview,	you	need	a	View	container,	for
example	a	UIView	
If	you	want	to	use	full	screen	preview	(default)	you	do	not	need	any	additional
containers.

For	example	if	we	want	to	use	partial	view	in	our	sample	application:	add	a
UIView	in	the	Main	storyboard	with	the	desired	dimensions	and	constraints,
and	use	it	in	reader	device	constructor	(previewView	parameter)	when	reader
device	is	initialized.

If	you	want	to	display	the	last	scanned	image,	add	a	UIImageView	for	container
instead	of	UIView	for	showing	the	last	frame	of	a	preview	or	scanning	session.

If	you	want	to	display	the	scanned	result	as	a	text,	add	UILabel.
	

2.	 Set	up	the	following	interfaces	to	monitor	the	connection	state	of	the	reader	and
receive	information	about	the	read	code:
	

//--
								//	When	an	applicaiton	is	suspended,	the	connection	to	the	scanning	device	is
								//	automatically	closed	by	iOS;	thus	when	we	are	resumed	(become	active)	we

t it le:	Xamarin	(v2.4.x)	;	ver:	2.7.x 32	/	74

								//	have	to	restore	the	connection	(assuming	we	had	one).	This	is	the	observer
								//	we	will	use	to	do	this.
								//--
								void	AppBecameActive(NSNotification	obj)
								{
												if	(readerDevice	!=	null	&&	readerDevice.Availability	==	CMBReaderAvailibility.Avai
lable	&&	readerDevice.ConnectionState	!=	CMBConnectionState.Connecting	&&	readerDevice.Connecti
onState	!=	CMBConnectionState.Connected)
												{
																ConnectToReaderDevice();
												}
								}

								public	override	void	ViewDidLoad()
								{
												base.ViewDidLoad();

												//	Add	our	observer	for	when	the	app	becomes	active	(to	reconnect	if	necessary)
												NSNotificationCenter.DefaultCenter.AddObserver(UIApplication.DidBecomeActiveNotific
ation,	AppBecameActive);
								}

//	This	is	called	when	a	MX-1xxx	device	has	became	available	(USB	cable	was	plugged,	or	MX	devi
ce	was	turned	on),
								//	or	when	a	MX-1xxx	that	was	previously	available	has	become	unavailable	(USB	cable	wa
s	unplugged,	turned	off	due	to	inactivity	or	battery	drained)
								[Export("availabilityDidChangeOfReader:")]
								public	void	AvailabilityDidChangeOfReader(CMBReaderDevice	reader)
								{
												ClearResult();

												if	(reader.Availability	!=	CMBReaderAvailibility.Available)
												{
																ShowAlert(null,	"Device	became	unavailable");
												}
												else
												{
																ConnectToReaderDevice();
												}
								}

								//	This	is	called	when	a	connection	with	the	self.readerDevice	has	been	changed.
								//	The	self.readerDevice	is	usable	only	in	the	"CMBConnectionStateConnected"	state
								[Export("connectionStateDidChangeOfReader:")]
								public	void	ConnectionStateDidChangeOfReader(CMBReaderDevice	reader)
								{
												isScanning	=	false;
												ClearResult();

												if	(readerDevice.ConnectionState	==	CMBConnectionState.Connected)
												{
																//	We	just	connected,	so	now	configure	the	device	how	we	want	it
																ConfigureReaderDevice();

																if	(connectingAlert	!=	null)
																{
																				connectingAlert.DismissViewController(true,	()	=>
																				{
																								connectingAlert	=	null;
																				});

t it le:	Xamarin	(v2.4.x)	;	ver:	2.7.x 33	/	74

																}
												}
												else	if	(readerDevice.ConnectionState	==	CMBConnectionState.Disconnected	&&	connect
ingAlert	!=	null)
												{
																connectingAlert.DismissViewController(true,	()	=>
																{
																				connectingAlert	=	null;
																});
												}

												UpdateUIByConnectionState();
								}

								//	This	is	called	after	scanning	has	completed,	either	by	detecting	a	barcode,	cancelin
g	the	scan	by	using	the	on-screen	button	or	a	hardware	trigger	button,	or	if	the	scanning	timed
-out
								[Export("didReceiveReadResultFromReader:results:")]
								public	void	DidReceiveReadResultFromReader(CMBReaderDevice	reader,	CMBReadResults	readR
esults)
								{
												isScanning	=	false;
												btnScan.Selected	=	false;

												scanResults.RemoveAllObjects();

												if	(readResults.SubReadResults	!=	null	&&	readResults.SubReadResults.Length	>	0)
												{
																scanResults.AddObjects(readResults.SubReadResults);
												}
												else	if	(readResults.ReadResults.Length	>	0)
												{
																scanResults.Add(readResults.ReadResults[0]);
												}

												tableViewSource.SetItems(scanResults);
												tvResults.ReloadData();
								}

	

3.	 Instantiate	a	CMBReaderDevice	object.

	

Using	the	MX	Reader

Initializ ing	the	CMBReaderDevice	for	use	with	an	MX	mobile	terminal	like	the	MX-1000,
MX-1100,	or	MX-1502	is	easy:	simply	create	the	reader	device	using	the	MX	device
method	(it	requires	no	parameters),	and	set	the	appropriate	delegate	(normally	self):

t it le:	Xamarin	(v2.4.x)	;	ver:	2.7.x 34	/	74

readerDevice	=	CMBReaderDevice.ReaderOfMXDevice();
readerDevice.WeakDelegate	=	this;

The	availability	of	the	MX	mobile	terminal	can	change	when	the	device	turns	ON	or	OFF,
or	if	the	lightning	cable	gets	connected	or	disconnected.	You	can	handle	those	changes
using	the	following	CMBReaderDeviceDelegate	method.

public	void	AvailabilityDidChangeOfReader(CMBReaderDevice	reader)

	

Using	the	Camera	Reader	or	MX-100	Barcode	Scanner

Barcode	scanning	with	the	built-in	camera	of	the	mobile	device	can	be	more	complex
than	with	an	MX	mobile	terminal.	Therefore	the	cmbSDK	supports	several	configurations
to	provide	the	maximum	flexibility,	including	support	of	optional	external	aimers	and
illumination,	as	well	as	the	ability	to	customize	the	appearance	of	the	live-stream
preview.	MX-100	is	such	an	external	device	for	your	iPhone	that	we	call	active	aimer.

To	scan	barcodes	using	MX-100	or	the	built-in	camera	of	the	mobile	device,	initialize	the
CMBReaderDevice	object	using	the	ReaderOfDeviceCameraWithCameraMode	static
method.	The	camera	reader	has	several	options	when	initialized.	The	following
parameters	are	required:

*	CDMCameraMode
*	CDMPreviewOption
*	UIView

	

The	CameraMode	parameter	is	of	the	type	CDMCameraMode,	and	it	accepts	one	of	the
following	values:

NoAimer:	If	no	aiming	accessory	is	available,	this	mode	initializes	the	live-stream
preview	on	the	screen	to	help	positioning	the	barcode	in	the	fie ld	of	view	for
detection	and	decoding.
PassiveAimer:	Initializes	passive	aimer	use,	which	is	an	external	accessory	that
uses	the	device's	built-in	LED	flash	for	illumination	to	project	an	aiming	pattern.	In	this
mode	no	live-stream	preview	is	presented	on	the	screen.
Act iveAimer:	Initializes	active	aimer	use,	such	as	the	MX-100.	Such	an	attachment
has	built-in	LEDs	for	projecting	an	aiming	pattern	and	illumination	powered	by	a	built-in
battery.	In	this	mode	no	live-stream	preview	is	presented	on	the	screen.
FrontCamera:	Initializes	use	of	the	front	facing	camera.	In	this	mode,	illumination	is

t it le:	Xamarin	(v2.4.x)	;	ver:	2.7.x 35	/	74

not	available.

NOTE:	Front-facing	cameras	do	not	have	auto	focus	and	illumination	as	a	rule,	and
provide	significantly	lower	resolution	images.	This	option	should	be	used	with	care.

The	above	modes	provide	the	following	default	settings	for	the	mobile	device	as	a	code
reader:

The	simulated	hardware	trigger	is	disabled.
When	StartScanning()	is	called,	the	decoding	process	is	started.	(Seek
CDMPreviewOption.Paused	for	more	details).

	

Based	on	the	selected	mode,	the	following	additional	options	and	behaviors	are	set:

NoAimer

The	live-stream	preview	is	displayed	when	the	StartScanning()	method	is
called.
Illumination	and	control	button	are	available	and	visible	on	the	live-stream
preview.
Aimer	control	commands	are	ignored.

PassiveAimer

The	live-stream	preview	will	not	be	displayed	when	the	StartScanning()
method	is	called	by	default.
Illumination	is	not	available
Illumination	control	commands	are	ignored.

Act iveAimer	(MX-100)

The	live-stream	preview	will	not	be	displayed	when	the	StartScanning()
method	is	called	by	default.
Illumination	is	available,	if	a	preview	option	for	camera	preview	is	enabled,	the
illumination	control	button	is	available	too.
Illumination	or	aimer	control	commands	are	accepted.

FrontCamera

The	live-stream	preview	is	displayed	when	the	StartScanning()	method	is
called.
The	front	camera	is	used.

t it le:	Xamarin	(v2.4.x)	;	ver:	2.7.x 36	/	74

Illumination	and	the	control	button	are	not	available.
Illumination	or	aimer	control	commands	are	ignored.

	

The	previewOptions	parameter	(of	type	CDMPreviewOption)	is	used	to	change	the
reader’s	default	values	or	override	defaults	derived	from	the	selected	CameraMode.
Multiple	options	can	be	specified	by	OR-ing	them	when	passing	the	parameter.	The
available	options	are	the	following:

Def ault s:	Accept	all	defaults	set	by	the	CameraMode.
NoZoomBtn:	Hide	the	zoom	button	on	the	live-stream	preview.
NoIllumBtn:	Hide	the	illumination	button	on	the	live-stream	preview.
HwTrigger:	Enable	simulated	hardware	trigger	(volume	controls)	for	starting	scanning.
When	pressed,	scanning	starts.
Paused:	Display	the	live-preview	when	the 	StartScanning()	method	is	called
without	starting	the	decoding	(i.e.	looking	for	barcodes).	Pressing	the	on-screen
scanning	button	starts	the	decoding.
AlwaysShow:	Force	display	of	live-preview	when	active	or	passive	aiming	mode	has
been	selected	(e.g.	CameraMode	==	PassiveAimer)
Pessimist icCaching:	Use	only	when	CameraMode	==	ActiveAimer,	this	will	read	the
settings	from	the	Act iveAimer	when	the	app	resumes	from	background,	in	case	the
aimer	settings	were	changed	from	another	app.

HighResolut ion:	Use	the	device	camera	in	higher	resolution	to	help	with	scanning
small	barcodes,	but	slow	decode	time.	The	option	sets	resolution	to	1920x1080	on
devices	that	support	it,	and	the	default	one	on	devices	that	do	not.The	default
resolution	is	1280x720.

HighFrameRate:	Sets	the	camera	to	60	FPS	instead	of	the	default	30	FPS	to	provide
a	smoother	camera	preview.

NOTE:	The	last	parameter	of	type	UIView	is	optional	and	is	used	as	a	container	for	the
camera	preview.	If	the	parameter	is	left	nil,	a	full	screen	preview	will	be	used.

Examples:

Create	a	reader	with	no	aimer	and	a	full	screen	live-stream	preview:

readerDevice	=	CMBReaderDevice.ReaderOfDeviceCameraWithCameraMode(CDMCameraMode.NoAimer,	CDMPreviewO
ption.Defaults,	null);
readerDevice.WeakDelegate	=	this;

Create	a	reader	with	no	aimer,	no	zoom	button,	and	using	a	simulated	trigger:

t it le:	Xamarin	(v2.4.x)	;	ver:	2.7.x 37	/	74

readerDevice	=	CMBReaderDevice.ReaderOfDeviceCameraWithCameraMode(CDMCameraMode.NoAimer,	CDMPreviewO
ption.NoZoomBtn	|	CDMPreviewOption.HwTrigger,	null);
readerDevice.WeakDelegate	=	this;

	

Connect ing	to	the	Device

Initialize	the	CMBReaderDevice	and	set	a	delegate	to	handle	responses	from	the	reader.

Then	connect	using	ConnectWithComplet ion:

//	Make	sure	the	device	is	turned	ON	and	ready
if	(readerDevice.Availability	==	CMBReaderAvailibility.Available	&&	readerDevice.ConnectionState	==	
CMBConnectionState.Disconnected)
{
				if	(readerDevice.DeviceClass	==	DataManDeviceClass.PhoneCamera	&&	cameraMode	==	CDMCameraMode.Ac
tiveAimer)
				{
								connectingAlert	=	UIAlertController.Create("Connecting",	null,	UIAlertControllerStyle.Alert)
;
								PresentViewController(connectingAlert,	true,	null);
				}

				readerDevice.ConnectWithCompletion((error)	=>
				{
								if	(error	!=	null)
								{
												ShowAlert("Failed	to	connect",	null);
								}
				});
}

When	connected	ConnectionStateDidChangeOfReader	in	the	delegate	is	called,	where
you	can	check	the	connection	status	in	your	Reader	Device's	ConnectionState	parameter.
It	should	be	CMBConnect ionState,Connected,	which	means	that	you	have
successfully	made	the	connection	to	the	CMBReaderDevice,	and	can	begin	using	the
Cognex	Mobile	Barcode	SDK.

Configuring	MX	Mobile	Terminals

The	MX	family	of	mobile	terminals	provides	sophisticated	device	configuration	and
management	including	saved	configurations	on	the	device.	MX	devices	come	Cognex
preconfigured	with	most	symbologies	and	features	ready	to	use.

If	you	would	like	a	custom	configuration,	reconfigure	through	DataMan	Setup	Tool,	or	the

t it le:	Xamarin	(v2.4.x)	;	ver:	2.7.x 38	/	74

Cognex	Quick	Setup.	Both	tools	distribute	saved	configurations	easily	to	multiple	devices
for	simple	configuration	management.

The	mobile	application	is	able	to	configure	the	MX	device	giving	you	the	option	to:	

have	multiple	scanning	applications,	each	of	which	requiring	a	different	set	of	device
settings
create	your	own	options	in	a	“known”	state,	even	though	the	device	has	been	pre-
configured	correctly

Built -in	Camera

The	cmbSDK	employs	a	default	set	of	options	for	barcode	reading	with	the	built-in
camera	of	the	mobile	device.	However,	there	are	two	important	differences	to	keep	in
mind:

The	cmbSDK	does	not	implement	saved	configurations	for	the	built-in	camera	reader.
Every	time	an	application	using	the	camera	reader	starts	defaults	are	used
automatically.
The	cmbSDK	does	not	enable	symbologies	by	default.	The	application	programmer
enables	all	barcode	symbologies	to	scan	in	your	application.	The	requisite	for
enabling	only	the	needed	symbologies	explicitly,	the	application	achieves	most
optimal	scanning	performance	on	the	mobile	device.	

MX-100

MX-100	is	a	device-case	attachment	for	iPhones	only	that	provides	additional
functionalities	to	the	built-in	camera	such	as	aiming	capabilities	and	better	illumination
control.	Being	a	hybrid	of	an	MX	device	and	a	built	in	scanner,	the	MX-100	has	settings	for
aimer	intensity,	illumination	intensity,	and	aimer	modulation	stored	on	the	device,	while
the	rest	of	the	settings,	like	symbologies	settings,	are	stored	in	the	cmbSDK.	See	the
MX-100	User	Guide	for	more	information.

Here	are	a	few	things	to	keep	in	mind	when	using	an	MX-100	device:

The	MX-100	does	not	require	a	license	to	use	the	device	camera,	optionally	a	free
licence	can	be	generated	for	tracking	purposes.
MX-100	comes	pre-configured	and	the	cmbSDK	has	the	following	symbologies
enabled	by	default:

Code	39
Code	128
Databar
PDF417
QR

t it le:	Xamarin	(v2.4.x)	;	ver:	2.7.x 39	/	74

UPC/EAN

The	cmbSDK	is	extended	with	a	cache	mechanism	to	strengthen	optical
communication	with	MX-100.	The	cache	stores	all	MX-100	settings	and	it	is	transparent
and	available	in	cmbSDK.	Initializ ing	and	updating	of	the	cache	is	the	responsibility	of
cmbSDK.	There	are	different	caches	for	different	settings:

Persistent	cache:	Settings/values	that	rarely	change	(if	at	all)	and	SDK	can	cache
on	the	iPhone	for	an	extended	period	of	time.	These	items	are	the	MX-100	Serial
number,	model	number,	and	firmware	version.	The	persistent	cache	is	updated	in
every	7	days.
Session	cache:	Settings/values	that	may	change	while	an	application	is	using	an
MX-100	(not	likely),	but	should	be	read	from	the	MX-100	on	SDK	load/initial
connection	to	the	MX-100.	These	items	are:	Aimer	intensity,	Aimer	modulation,
Aimer	timeout,	Illumination	intensity,	and	Illumination	state.
By	default,	the	session	cache	will	be	maintained	optimistically	for	the	best
performance.	The	SDK	assumes	that	another	application	is	not	changing	the
settings	of	the	aimer,	the	SDK	only	needs	to	read	the	aimer's	settings	one	time,
when	the	initial	connection	is	established.

NOTE:	If	another	application	changes	the	aimer	settings	the	cache	may	become	out	of
sync	with	the	aimer.	In	such	a	case	the	cmbSDK	gives	the	possibility	to	handle	the
Session	cache	pessimistically	where	the	aimer's	configuration	is	loaded	each	time	the
application	is	resumed.	This	behavior	is	accomplished	by	adding	an	option	flag	to	the
camera	connector:	PreviewOpt ion.Pessimist icCaching.

Enabling	Symbologies

Individual	symbologies	can	be	enabled	using	the	following	method	of	the
CMBReaderDevice	object:

readerDevice.SetSymbology(CMBSymbology.DataMatrix,	true,	null);

All	symbologies	used	for	the	symbology	parameter	in	this	method	can	be	found	in
CMBSymbology	enum.

The	same	method	can	also	be	used	to	turn	symbologies	off:

readerDevice.SetSymbology(CMBSymbology.DataMatrix,	false,	null);

t it le:	Xamarin	(v2.4.x)	;	ver:	2.7.x 40	/	74

	

Illuminat ion	Control

If	your	reader	device	is	equipped	with	illumination	(e.g.	LEDs),	you	can	control	whether
they	are	ON	or	OFF	when	scanning	starts	using	the	following	method	of	your
CMBReaderDevice	object:

readerDevice.SetLightsON(true,	(error)	=>
{
				if	(error	!=	null)
				{
								System.Diagnostics.Debug.WriteLine("//	Failed	to	enable	illumination,	Possible	causes	are:	r
eader	disconnected,	out	of	battery	or	cable	unplugged,	or	device	doesn't	come	with	illumination	ligh
ts");
				}
});

Keep	in	mind	that	not	all	devices	and	device	modes	supported	by	the	cmbSDK	allow
illumination	control.	For	example,	if	using	the	built-in	camera	in	passive	aimer	mode,
illumination	is	not	available	since	the	LED	is	being	used	for	aiming.

Camera	Zoom	Sett ings

If	built-in	camera	is	used	as	reader	device	you	have	the	possibility	to	configure	zoom
levels	and	define	the	way	these	zoom	levels	are	used.

There	are	3	zoom	levels	for	the	phone	camera,	which	are:

normal:	not	zoomed	(100%)
level	1	zoom	(default	200%)
level	2	zoom	(default	400%)

You	can	define	these	zoom	levels	with	"SET	CAMERA.ZOOM-PERCENT	[100-MAX]	[100-
MAX]"	command.	It	configures	how	far	the	two	levels	will	zoom	in	percentage.	100	is
without	zoom,	and	MAX	(goes	up	to	1000)	will	zoom	as	far	as	the	device	is	capable	of.
First	argument	is	used	for	setting	level	1	zoom,	and	the	second	for	level	2	zoom.

When	you	want	to	check	current	setting,	you	can	do	this	with	the	"GET	CAMERA.ZOOM-
PERCENT"	that	returns	two	values:	level	1	and	level	2	zoom.

Example

t it le:	Xamarin	(v2.4.x)	;	ver:	2.7.x 41	/	74

readerDevice.DataManSystem.SendCommand("SET	CAMERA.ZOOM-PERCENT	250	500");

	

Note:	Camera	needs	to	be	started	within	SDK	at	least	once	to	have	a	valid
maximum	zoom	level.	It	means	that	if	you	set	the	zoom	level	to	1000	and	the	device
can	go	up	to	600	only,	"GET	CAMERA.ZOOM-PERCENT"	command	returns	1000	as	long
as	camera	is	not	opened	(e.g.	with	readerDevice.StartScanning();),	but	it	returns	600
afterwards.

here	is	another	command	that	sets	which	zoom	level	you	want	to	use	or	returns	the
actual	setting:	"GET/SET	CAMERA.ZOOM	0-2".

Possible	values	for	the	SET	command	are:

0	-	normal	(un-zoomed)
1	-	zoom	at	level	1
2	-	zoom	at	level	2

You	can	call	this	command	before	scanning	or	even	during	scanning,	the	zoom	goes	up	to
the	level	that	was	configured.

When	the	scanning	is	finished,	the	values	are	reset	to	normal(0).

Example

readerDevice.DataManSystem.SendCommand("SET	CAMERA.ZOOM	2");

	

Camera	Overlay	Customizat ion

When	using	the	built-in	camrea	of	the	mobile	device,	the	cmbSDK	allows	you	to	see	the
Camera	Preview	inside	a	preview	container	or	in	full	screen.	This	preview	also	contains
an	overlay,	which	can	be	customized.	The	cmbSDK	camera	overlay	is	built	from	buttons
for	zoom,	flash,	closing	the	scanner	(in	full	screen),	a	progress	bar	indicating	the	scan
timeout,	and	lines	on	the	corners	of	the	camera	preview.	There	are	two	available
overlays:	legacy	and	CMB	overlay.

To	use	the	legacy	camera	overlay,	which	was	used	in	the	cmbSDK	v2.0.x	and	the
ManateeWorks	SDK,	use	this	property	from	MWOverlay	before	initializ ing	the
CMBReaderDevice:

t it le:	Xamarin	(v2.4.x)	;	ver:	2.7.x 42	/	74

NOTE:	The	legacy	overlay	has	limited	customization	options,	so	it	is	preferred	to	use
the	CMB	overlay.

MWOverlay.SetOverlayMode((int)	OverlayMode.Legacy);

If	using	the	CMB	overlay,	you	can	find	the	layout	files	in	the	Resources/layout	directory:

CMBScannerPart ialView.xib	used	when	the	scanner	is	started	inside	a	container
(partial	view)

CMBScannerView.xib	when	the	scanner	is	started	in	full	screen

Copy	the	layout	file 	that	you	need,	or	both	layouts,	then	modify	them	as	you	like.	Change
the	size,	position	or	color	of	the	views,	remove	views,	and	add	your	own	views,	like	an
overlay	image.	The	views	that	are	used	by	the	cmbSDK	(zoom,	flash,	close	buttons,	the
view	used	for	drawing	lines	on	the	corners,	and	the	progress	bar)	are	accessed	by	the
sdk	using	the	Tag	attribute,	make	sure	the	Tag	attribute	remains	unchanged,	so	that	the
cmbSDK	is	able	to	recognize	the	views	and	continue	to	function	correctly.

Both	the	CMB	and	the	legacy	overlay	allow	you	to	change	the	images	used	on	the	zoom
and	flash	buttons.	To	do	that,	first	copy	the	assets	folder
MWBScannerImages.xcassets	from	the	Resources	dir	into	your	project.	In	VisualStudio
you	can	look	at	the	images	contained	in	this	assets	folder,	and	replace	them	with	your
own	while	keeping	the	image	names	unchanged.

Both	the	CMB	and	the	LEGACY	overlay	allow	you	to	change	the	color	and	width	of	the
rectangle	that	is	displayed	when	a	barcode	is	detected.	Here's	an	example	on	how	to	do
that:

MWOverlay.SetLocationLineUIColor(UIColor.Yellow);
MWOverlay.SetLocationLineWidth(5);

	

Advanced	Configurat ion

Every	Cognex	scanning	device	implements	DataMan	Control	Commands	(DMCC),	a
method	for	configuring	and	controlling	the	device.	Virtually	every	feature	of	the	device
can	be	controlled	using	this	text	based	language.	The	API	provides	a	method	for	sending
DMCC	commands	to	the	device.	Commands	exist	both	for	setting	and	querying
configuration	properties.

t it le:	Xamarin	(v2.4.x)	;	ver:	2.7.x 43	/	74

Appendix	A	includes	the	complete	DMCC	reference	for	use	with	the	camera	reader.
DMCC	commands	for	other	supported	devices	(e.g.	the	MX-1000)	are	included	with	the
documentation	of	that	particular	device.
Appendix	B	provides	the	default	values	for	the	camera	reader’s	configuration	settings
as	related	to	the	corresponding	DMCC	setting.

DMC	commands	are	same	for	all	platforms	and	frameworks.

The	following	examples	show	different	DMCC	commands	being	sent	to	the	device	for
more	advanced	configuration.

Example:

Change	the	scan	direction	to	omnidirectional:

readerDevice.DataManSystem.SendCommand("SET	DECODER.1D-SYMBOLORIENTATION	0",	(response)	=>
{
				if	(response.Status	==	CDMResponseStatus.DMCC_STATUS_NO_ERROR)
				{
								//	Command	was	executed	successfully
				}
				else
				{
								//	Command	failed,	handle	errors	here
				}
});

Change	the	scanning	timeout	of	the	live-stream	preview	to	10	seconds:	

readerDevice.DataManSystem.SendCommand("SET	DECODER.MAX-SCAN-TIMEOUT	10",	(response)	=>
{
				if	(response.Status	==	CDMResponseStatus.DMCC_STATUS_NO_ERROR)
				{
								//	Command	was	executed	successfully
				}
				else
				{
								//	Command	failed,	handle	errors	here
				}
});

Get	the	type	of	the	connected	device:

readerDevice.DataManSystem.SendCommand("GET	DEVICE.TYPE",	(response)	=>
{
				if	(response.Status	==	CDMResponseStatus.DMCC_STATUS_NO_ERROR)
				{

https://cmbdn.cognex.com/knowledge/-cognex-mobile-barcode-sdk-for-ios/appendix-a-dmcc-for-the-camera-reader
https://cmbdn.cognex.com/knowledge/-cognex-mobile-barcode-sdk-for-ios/appendix-b-camera-reader-defaults

t it le:	Xamarin	(v2.4.x)	;	ver:	2.7.x 44	/	74

								//	Command	was	executed	successfully
				}
				else
				{
								//	Command	failed,	handle	errors	here
				}
});

	

Resett ing	the	Configurat ion

NOTE:	This	section	only	contains	instruction	to	reset	cmbSDK	defaults.	For	information
on	resetting	to	factory	defaults	please	refer	to	the	manual	of	the	reader	device.

The	cmbSDK	includes	a	method	for	resetting	the	device	to	its	default	settings.	In	the
case	of	an	MX	mobile	terminal,	this	is	the	configuration	saved	by	default,	while	in	the
case	of	the	built-in	camera,	these	are	the	defaults	identified	in	Appendix	B,	where	no
symbologies	will	be	enabled.	This	method	is	the	following:

readerDevice.ResetConfigWithCompletion((error)	=>
{
				if	(error	!=	null)
				{
								//	Failed	to	reset	configuration,	Possible	causes	are:	reader	disconnected,	out	of	battery	o
r	cable	unplugged
				}
});

	

Scanning	Barcodes

With	a	properly	configured	reader,	you	are	ready	to	scan	barcodes.	This	is	simply
accomplished	by	calling	the	StartScanning()	method	from	your	CMBReaderDevice
object.	What	happens	next	is	based	on	the	type	of	CMBReaderDevice	and	how	it	has
been	configured.	Generally:

If	using	an	MX	terminal,	press	a	trigger	button	on	the	device	to	turn	the	scanner	on
and	read	a	barcode.
If	using	the	camera	reader,	the	cmbSDK	starts	the	camera,	displays	the	configured
live-stream	preview,	and	begins	analyzing	the	frames	from	the	video	stream,	looking
for	a	configured	barcode	symbology.

https://cmbdn.cognex.com/knowledge/-cognex-mobile-barcode-sdk-for-ios/appendix-b-camera-reader-defaults

t it le:	Xamarin	(v2.4.x)	;	ver:	2.7.x 45	/	74

Scanning	stops	under	one	of	the	following	conditions:

The	reader	found	and	decoded	a	barcode.
The	user	released	the	trigger	or	pressed	the	stop	button	on	the	live-stream	preview
screen.
The	camera	reader	timed	out	without	finding	a	barcode.
The	application	program	calls	the	StopScanning()	method.

When	a	barcode	is	decoded	successfully,	you	will	receive	a	CMBReadResults	array	in
your	CMBReaderDevice's	delegate	using	the	following	ICMBReaderDeviceDelegate
method:

public	void	DidReceiveReadResultFromReader(CMBReaderDevice	reader,	CMBReadResults	readResults)

To	simply	display	a	ReadResult	after	scanning	a	barcode:

public	void	DidReceiveReadResultFromReader(CMBReaderDevice	reader,	CMBReadResults	readResults)
{
				if	(readResults.ReadResults.Length	>	0)
				{
								CMBReadResult	readResult	=	(CMBReadResult)readResults.ReadResults[0];
								
								if(readResult.Image	!=	null)
								{
												ivPreview.Image	=	readResult.Image;
								}

								if	(readResult.ReadString	!=	null)
								{
												lblCode.Text	=	readResult.ReadString;
								}
				}
}

In	the	example	above,	ivPreview	is	an	UIImageView	used	to	display	an	image	of	the
barcode	that	was	scanned,	and	lblCode	is	a	UILabel	used	to	show	the	result	from	the
barcode.	You	can	also	use	the	bool	from	readResult.GoodRead	to	check	whether	the	scan
was	successful	or	not.	

Working	with	Results

When	a	barcode	is	successfully	read,	a	CMBReadResult	object	is	created	and	returned	by
the	DidReceiveReadResultFromReader	method.	In	case	of	having	multiple	barcodes
successfully	read	on	a	single	image/frame,	multiple	CMBReadResult	objects	are	returned.
This	is	why	the	CMBReadResults	class	has	an	array	of	CMBReadResult	objects	containing

t it le:	Xamarin	(v2.4.x)	;	ver:	2.7.x 46	/	74

all	results.

The	CMBReadResult	class	has	properties	describing	the	result	of	a	barcode	read:

GoodRead	(bool):	te lls	whether	the	read	was	successful	or	not
ReadSt ring	(string):	the	decoded	barcode	as	a	string
Image	(UIImage):	the	image/frame	that	the	decoder	has	processed
ImageGraphics	(NSData):	the	boundary	path	of	the	barcode	as	SVG	data
XML	(NSData):	the	raw	XML	that	the	decoder	returned
Symbology	(CMBSymbology):	the	symbology	type	of	the	barcode.

When	a	scanning	ends	with	no	successful	read,	a	CMBReadResult	is	returned	with	the
GoodRead	property	set	to	false.	This	usually	happens	when	scanning	is	canceled	or
timed	out.

To	enable	the	image	and	ImageGraphics	properties	being	filled	in	the	CMBReadResult
object,	you	have	to	set	the	corresponding	ImageResultEnabled	and/or
SVGResultEnabled	properties	of	the	CMBReaderDevice	object.

To	see	an	example	on	how	the	image	and	SVG	graphics	are	used	and	displayed	in
paralle l,	refer	to	the	sample	applications	provided	in	the	SDK	package.

To	access	the	raw	bytes	from	the	scanned	barcode,	you	can	use	the	XML	property.	The
bytes	are	stored	as	a	Base64	string	under	the	"full_string"	tag.

Image	Results

By	default,	the	image	and	SVG	results	are	disabled,	which	means	that	when	scanning,
the	CMBReadResults	will	not	contain	any	data	in	the	corresponding	properties.

Not	all	supported	devices	provide	SVG	graphics.

To	enable	image	results,	set	the	ImageResultEnabled	property	from	the
CMBReaderDevice	class	by	using	the	following	method:

readerDevice.ImageResultEnabled	=	false;

To	enable	SVG	results,	set	the	imageResultEnabled	property	from	the	CMBReaderDevice
class	by	using	the	following	method:	

readerDevice.SVGResultEnabled	=	false;

t it le:	Xamarin	(v2.4.x)	;	ver:	2.7.x 47	/	74

	

Handling	Disconnect ion

1.	Disconnection:

There	may	be	cases	when	a	device	disconnects	due	to	low	battery	condition	or	manual
cable	disconnection.	These	cases	can	be	detected	by	the
ConnectionStateDidChangeOfReader	callback	of	the	ICMBReaderDeviceDelegate.

Note:	The	Availabilit yDidChangeOfReader	method	is	also	called	when	the
device	becomes	physically	unavailable.	It	means	that	the	(re)connection	is	not
possible.	Always	check	the	availability	property	of	the	CMBReaderDevice	object
before	trying	to	call	the	ConnectWithComplet ion	method.

	

2.	Re-Connection:

After	returning	to	your	application	from	inactive	state,	the	reader	device	remains
initialized	but	not	connected.	There	is	no	need	for	re initializ ing	the	SDK	but	you	need	to
re-connect.

Some	iOS	versions	will	send	an	"Availability"	notification	when	resuming	the	application
that	the	external	accessory	is	available.	You	can	use	this	in	the
ICMBReaderDeviceDelegate	method:	void
AvailabilityDidChangeOfReader(CMBReaderDevice	reader)	so	when	the	reader	becomes
available,	you	can	connect.

For	example:

public	void	AvailabilityDidChangeOfReader(CMBReaderDevice	reader)
{
				if	(readerDevice.Availability	==	CMBReaderAvailibility.Available)
				{
								readerDevice.ConnectWithCompletion((error)	=>
								{
												if	(error	!=	null)
												{
																//	handle	connection	error
												}

								});
				}
}

t it le:	Xamarin	(v2.4.x)	;	ver:	2.7.x 48	/	74

	

Some	iOS	versions	do	not	report	availability	change	on	resume,	so	you	need	to	handle
this	manually.	Add	an	observer	for	UIApplicationDidBecomeActiveNotification	and	connect.

NOTE:	Make	sure	that	the	reader	is	not	already	in	"connecting"	or	"connected"	state.

Example:

public	override	void	ViewDidLoad()
{
				base.ViewDidLoad();

				NSNotificationCenter.DefaultCenter.AddObserver(UIApplication.DidBecomeActiveNotification,	AppBec
ameActive);
}

void	AppBecameActive(NSNotification	obj)
{
				if	(readerDevice	!=	null	&&	readerDevice.Availability	==	CMBReaderAvailibility.Available	&&	read
erDevice.ConnectionState	!=	CMBConnectionState.Connecting	&&	readerDevice.ConnectionState	!=	CMBConn
ectionState.Connected)
				{
								readerDevice.ConnectWithCompletion((error)	=>
								{
												if	(error	!=	null)
												{
																//	handle	connection	error
												}
								});
				}
}

	

Xamarin.Forms

Gett ing	Started

Open	Visual	Studio	and	follow	these	steps:

1.	Go	to	File	->	New	->	Project .

2.	Create	Mobile	App(Xamarin.Forms)	,	set	project	name,	from	templates	select
Blank	and	choose	Android	and	iOS	platform.

t it le:	Xamarin	(v2.4.x)	;	ver:	2.7.x 49	/	74

t it le:	Xamarin	(v2.4.x)	;	ver:	2.7.x 50	/	74

Next	right	click	on	your	Android	platform	specific	project	file ,	then	click	Properties	and	go
to	Android	Manifest	section.

Setup	your	Manifest	file 	(app	name,	app	icon,	minimum	and	maximum	android	versions),
make	sure	to	enable	Camera	permission.

t it le:	Xamarin	(v2.4.x)	;	ver:	2.7.x 51	/	74

We	should	do	same	for	iOS	platform	specific	project.	Open	your	Inf o.plist 	file 	and	set
some	project	properties	for	your	needs	(app	name,	deployment	target,	etc..)

t it le:	Xamarin	(v2.4.x)	;	ver:	2.7.x 52	/	74

and	make	sure	to	add	Camera	permission.	In	Visual	Studio	there	is	no	options	to	add
this	permission	from	here.	You	need	to	open	your	Inf o.plist 	file 	in	some	text	editor	and
add	these	lines:

<key>NSCameraUsageDescription</key>
<string>Camera	used	for	scanning</string>

If	you	use	MX	Device	as	reader	device	add	this	protocols	in	Info.plist:

<key>UISupportedExternalAccessoryProtocols</key>
<array>
			<string>com.cognex.dmcc</string>
			<string>com.demo.data</string>
</array>

and	please	check	this	section	before	uploading	your	app	on	the	App	Store:	Getting	your
MX	Mobile	Terminal	Enabled	App	into	the	App	Store

Reference	cmbSDK

Now	we	need	to	reference	XamarinDataManLibrary.dll	in	both	platform-specific
projects	in	order	to	use	the	cmbSDK.

First,	add	that	reference	in	the	Android	platform-specific	project:

https://cmbdn.cognex.com/knowledge/-cognex-mobile-barcode-sdk-for-ios/getting-your-mx-mobile-terminal-enabled-app-into-the-app-store

t it le:	Xamarin	(v2.4.x)	;	ver:	2.7.x 53	/	74

Browse	and	find	XamarinDataManLibrary.dll	file 	and	add	it	as	a	reference	in	this
project.

Next	do	the	same	for	iOS:

t it le:	Xamarin	(v2.4.x)	;	ver:	2.7.x 54	/	74

If	you	plan	to	use	your	application	on	devices	with	iOS	lower	than	12.2	extra	steps	are
required:

Add	Swift	dylib	dependencies	for	runtime	support.	Starting	from	iOS	12.2	and	Swift
5.1,	the	language	became	ABI	(application	binary	interface)	stable	and	compatible.
That's	why	any	application	targeting	a	lower	iOS	version	needs	to	include	Swift	dylibs
dependencies	used	by	the	framework.	Use	the	SwiftRuntimeSupport	NuGet	package
to	automatically	include	required	dylib	dependencies	into	the	resulting	application
package.
Add	Swif tSupport 	folder	with	signed	dylibs,	which	is	validated	by	the	AppStore
during	the	uploading	process.	The	package	should	to	be	signed	and	distributed	to	the
AppStore	connect	using	Xcode	tools,	otherwise,	it	will	be	automatically	re jected.

https://www.nuget.org/packages/Xamarin.iOS.SwiftRuntimeSupport/

t it le:	Xamarin	(v2.4.x)	;	ver:	2.7.x 55	/	74

Note:	This	package	works	only	on	real	devices.	You	won't	be	able	to	test	your	application
on	simulators	with	an	iOS	version	lower	than	12.2.

Licensing	the	SDK

To	use	cmbSDK	for	barcode	scanning	with	a	mobile	device	without	an	MX	mobile	terminal,
you	need	to	install	a	license	key.	If	the	license	key	is	missing,	asterisks	will	appear
instead	of	scanned	results.

Contact	your	Cognex	Sales	Representative	for	information	on	how	to	obtain	a	license
key,	including	30-day	trial	licenses.

If	you	obtain	cross	platform	license	(one	license	for	both	platforms)	implement	an
activation	directly	from	the	code	when	you	create	camera	scanner:

if	(param_deviceClass	==	ScannerDevice.PhoneCamera)
{
				//***
				//	Create	a	camera	scanner	(for	either	the	built-in	camera	or	an	MX-100)
				//
				//	NOTE:	if	we	are	connecting	to	a	MX-100	(cameraMode	==	ScannerCameraMode.ActiveAimer)	then
				//							no	license	key	is	needed.	However,	if	we're	scanning	using	the	built-in	camera
				//							of	the	mobile	phone	or	tablet,	then	the	SDK	requires	a	license	key.	Refer	to
				//							the	SDK's	documentation	on	obtaining	a	license	key	as	well	as	the	methods	for
				//							passing	the	key	to	the	SDK	(in	this	example,	we're	relying	on	an	entry	in
				//							plist.info	and	androidmanifest.xml--there	are	also	DeviceCamera	methods	where	it	can	be
	passed
				//							as	a	parameter).
				//***
				scannerControl.GetPhoneCameraDevice(param_cameraMode,	ScannerPreviewOption.Defaults,	true,	"SDK_
KEY");
}

Otherwise	if	you	have	different	keys	(key	for	iOS	only	and	key	for	Android	only)	add
these	keys	inside	AndroidManifest.xml	or	Info.plist	files.

For	Android	add	the	following	line	in	the	AndroidManifest.xml	file 	of	your	application	under
the	application	tag:

<application>
							
					<meta-data	android:name="MX_MOBILE_LICENSE"	
										android:value="YOUR_MX_MOBILE_LICENSE"/>
</application>

For	iOS	add	it	as	a	key	with	a	value	in	the	project	specific	Info.plist	file:

t it le:	Xamarin	(v2.4.x)	;	ver:	2.7.x 56	/	74

<key>MX_MOBILE_LICENSE</key>
<string>Your	license	key</string>

	

Implement ing	SDK

1.	 When	you	build	your	UI	considering	that	if	you	want	to	show	partial	screen	you	need
to	set	size	on	scannerCont rol	that	represent	the	reader	device	and	when	you
create	camera	scanner	in	constructor	send	f alse	as	input	parameter	for	f ullScreen.
If	you	want	to	use	full	screen	preview	don't	need	to	set	any	size	on
scannerCont rol	and	in	constructor	send	t rue	as	input	parameter	for	f ullScreen
(like	in	our	sample	app).
	

2.	 Set	up	the	following	event	handlers	to	monitor	the	connection	state	of	the
scannerControl	and	receive	information	about	the	read	code:

//	This	is	called	when	a	MX-1xxx	device	has	became	available	(USB	cable	was	plugged,	or	MX	devi
ce	was	turned	on),
//	or	when	a	MX-1xxx	that	was	previously	available	has	become	unavailable	(USB	cable	was	unplug
ged,	turned	off	due	to	inactivity	or	battery	drained)
public	void	OnAvailabilityChanged(object	sender,	ScannerAvailability	availability)
{
				ClearResult();

				if	(availability	==	ScannerAvailability.Available)
				{
								ConnectToScannerDevice();
				}
				else	if	(availability	==	ScannerAvailability.Unavailable)
				{
								DisplayAlert("Device	became	unavailable",	null,	"OK");
				}
}

//	The	connect	method	has	completed,	here	you	can	see	whether	there	was	an	error	with	establish
ing	the	connection	or	not
//	(args:	ScannerExceptions	exception,	string	errorMessage)
public	void	OnConnectionCompleted(object	sender,	object[]	args)
{
				//	If	we	have	valid	connection	error	param	will	be	null,
				//	otherwise	here	is	error	that	inform	us	about	issue	that	we	have	while	connecting	to	scan
ner
				if	((ScannerExceptions)args[0]	!=	ScannerExceptions.NoException)
				{
								//	ask	for	Camera	Permission	if	necessary	(android	only,	for	iOS	we	handle	permission	f
rom	SDK)
								if	((ScannerExceptions)args[0]	==	ScannerExceptions.CameraPermissionException)
												RequestCameraPermission();
								else
								{

t it le:	Xamarin	(v2.4.x)	;	ver:	2.7.x 57	/	74

												Debug.WriteLine(args[1].ToString());
												UpdateUIByConnectionState(ScannerConnectionStatus.Disconnected);
								}
				}
}

//	This	is	called	when	a	connection	with	the	scanner	has	been	changed.
//	The	scanner	is	usable	only	in	the	"Connected"	state
public	void	OnConnectionStateChanged(object	sender,	ScannerConnectionStatus	status)
{
				ClearResult();

				if	(status	==	ScannerConnectionStatus.Connected)
				{
								//	We	just	connected,	so	now	configure	the	device	how	we	want	it
								ConfigureScannerDevice();
				}

				isScanning	=	false;
				UpdateUIByConnectionState(status);
}

//	This	is	called	after	scanning	has	completed,	either	by	detecting	a	barcode,	canceling	the	sc
an	by	using	the	on-screen	button	or	a	hardware	trigger	button,	or	if	the	scanning	timed-out
public	void	OnReadResultReceived(object	sender,	List<ScannedResult>	results)
{
				ClearResult();

				foreach	(ScannedResult	item	in	results)
								scanResults.Add(item);

				isScanning	=	false;
				btnScan.Text	=	"START	SCANNING";
}

	

3.	 Create	scanner	device

Using	the	MX	Reader

Initialize	a	scanner	device	object	for	MX	readers	using	the	following	factory	method:

//***
																//	Create	an	MX-1xxx	scanner		(note	that	no	license	key	in	needed)
																//**

scannerControl.GetMXDevice();

t it le:	Xamarin	(v2.4.x)	;	ver:	2.7.x 58	/	74

The	availability	of	the	MX	mobile	terminal	can	change	when	the	device	turns	on	or	off,	or
if	the	USB	cable	gets	connected	or	disconnected.	You	can	handle	those	changes	using
the	following	method	from	AvailabilityChanged	event	handler:

public	void	OnAvailabilityChanged(ScannerAvailability	args)

	

Using	the	Camera	Reader

You	are	recommended	to	use	an	MX	mobile	terminal	to	scan	barcodes.	However,
cmbSDK	also	supports	using	the	built-in	camera	of	a	mobile	device.	This	includes	the
support	of	optional	external	aimers	or	illumination,	and	the	customization	of	the	live-
stream	preview's	appearance.

To	scan	barcodes	using	the	built-in	camera	of	a	mobile	device,	initialize	the	scanner
device	object	using	the	scannerControl.GetPhoneCameraDevice	method.	The	camera
reader	has	several	options	when	initialized.	The	following	parameters	are	required:

CameraMode
PreviewOption
FullScreen
RegistrationKey

The	ScannerCameraMode	parameter	is	of	type	ScannerCameraMode	enum	and	it	accepts
one	of	the	values	listed	in	the	following	table.

These	modes	provide	the	following	default	settings	for	the	scanner:

The	zoom	feature	is	available	and	a	button	to	control	it	is	visible	on	the	live-stream
preview	(if	displayed).
The	simulated	hardware	trigger	(volume	control	buttons)	is	disabled.
When	StartScanning()	is	called,	the	decoding	process	is	started.

Based	on	the	selected	mode,	additional	illumination	options	and	behaviors	are	set,	also
listed	in	the	table.

VALUE DESCRIPT ION ILLUMINATION
LIVE-

STREAM
PREVIEW

Initializes	the	reader	to
use	a	live-stream

preview	on	the	mobile

Illumination	is
available	and	a
button	to	control

t it le:	Xamarin	(v2.4.x)	;	ver:	2.7.x 59	/	74

NoAimer

device	screen	so	the
user	can	position	the
barcode	within	the

camera’s	field	of	view
for	detection	and
decoding.	Use	this
mode	if	the	mobile

device	does	not	have
an	aiming	accessory.

it	is	visible	on
the	live-stream

preview. Displayed

If	commands	are
sent	to	the

reader	for	aimer
control,	they	are

ignored.

PassiveAimer

Initializes	the	reader	to
use	a	passive	aimer.

No	live-stream
preview	is	available	on
the	device	screen	in
this	mode,	since	an
aiming	pattern	is

projected.

Illumination	is	not
available,	and
the	live-stream
preview	does
not	have	an
illumination
button.

Not
Displayed

If	commands	are
sent	to	the
reader	for
illumination

control,	they	are
ignored	because
it	is	assumed	in
this	mode	that

the	built-in	LED	of
the	mobile

device	is	being
used	for	the

aimer.

ActiveAimer
(for	iOS
only)

The	live-stream
preview	will	not	be
displayed	when	the
StartScanning()
method	is	called	by

default.

Illumination	is
available,	if	a
preview	option
for	camera
preview	is
enabled,	the
illumination

control	button	is
available	too	.

Not
Displayed

Illumination	or
aimer	control
commands	are
accepted	.

Initializes	the	reader	to
The	front	camera

is	used.

t it le:	Xamarin	(v2.4.x)	;	ver:	2.7.x 60	/	74

FrontCamera

use	the	front	camera
of	the	mobile	device,
if	available.	Use	this

configuration	with	care
because	most	front

facing	cameras	do	not
have	auto	focus	and
illumination,	and

provide	significantly
lower	resolution

images.	Illumination	is
not	available	in	this

mode.

Displayed

Illumination	is	not
available	and	the

live-stream
preview	does
not	have	an
illumination
button.

If	commands	are
sent	to	the

reader	for	aimer
or	illumination

control,	they	are
ignored.

The	ScannerPreviewOption	parameter	is	of	type 	ScannerPreviewOption	enum,	and	is
used	to	change	the	reader’s	default	values	or	override	defaults	derived	from	the
selected	ScannerCameraMode.	You	can	specify	the	following	options:

VALUE DESCRIPT ION

Defaults Accept	all	defaults	set	by	the	CameraMode.

NoZoomButton
Hides	the	zoom	button	on	the	live-stream

preview,	preventing	the	user	from	adjusting	the
zoom	of	the	mobile	device	camera.

NoIlluminationButton
Hides	the	illumination	button	on	the	live-stream
preview,	preventing	the	user	from	toggling	the

illumination.

HardwareTrigger

Enables	a	simulated	hardware	trigger	(the
volume	down	button)	for	starting	scanning	on
the	mobile	device.	This	button	only	starts

scanning	when	pressed,	it	does	not	need	to	be
held	like	a	purpose-built	scanner’s	trigger,	and
pressing	it	a	second	time	does	not	stop	the

scanning	process.

Paused

If	using	a	live-stream	preview,	the	preview	is
displayed	when	the	startScanning()	method	is
called,	but	the	reader	does	not	start	decoding
until	the	user	presses	the	on-screen	button	to

start	the	scanning	process.

t it le:	Xamarin	(v2.4.x)	;	ver:	2.7.x 61	/	74

AlwaysShow
Forces	a	live-stream	preview	to	be	displayed

even	if	an	aiming	mode	is	selected	(for	example
CameraMode	==	PASSIVE_AIMER).

PessimisticCaching

Uses	the	device	camera	in	higher	resolution,
changing	the	default	1280x720	resolution	to
1920x1080	on	devices	that	support	it,	and	to
the	default	resolution	on	devices	that	do	not
support	it.	This	can	help	with	scanning	small
barcodes,	but	increases	the	decoding	time	as
there	is	more	data	to	process	in	each	frame.

HighResolution
(for	iOS	only)

Use	the	device	camera	in	higher	resolution	to
help	with	scanning	small	barcodes,	but	slow
decode	time.	The	option	sets	resolution	to

1920x1080	on	devices	that	support	it,	and	the
default	one	on	devices	that	do	not.The	default

resolution	is	1280x720	.

HighFrameRate
Uses	the	device's	camera	in	60	FPS	instead	of
the	default	30	FPS	to	provide	a	smoother

camera	preview.

ShowCloseButton Show	close	button	in	partial	view.

If	the	FullScreen	parameter	is	set	t rue,	a	full	screen	preview	is	used,	otherwise	partial
screen	preview	is	in	use.

The	RegistrationKey	(optional)	parameter	is	used	to	license	your	SDK	with	license	key
that	you	have

Examples:

Create	a	reader	with	no	aimer	and	a	full	screen	live-stream	preview:

scannerControl.GetPhoneCameraDevice(ScannerCameraMode.NoAimer,	ScannerPreviewOption.Defaults,	true);

Create	a	reader	with	no	aimer,	no	zoom	button,	and	using	a	simulated	trigger:

scannerControl.GetPhoneCameraDevice(ScannerCameraMode.NoAimer,	ScannerPreviewOption.NoZoomButton	|	S
cannerPreviewOption.HardwareTrigger,	true);

	

t it le:	Xamarin	(v2.4.x)	;	ver:	2.7.x 62	/	74

Request ing	Camera	Permission	for	Phone	Camera	Scanner	(for
Android	only)

From	Android	6.0	and	above	you	need	to	request	permission	from	the	user	to	access	the
built-in	camera	of	the	mobile	device.

If	the	camera	cannot	be	opened	due	to	permission	issues,	the
OnConnectionCompleted(sender,	args)	callback	contains	a	ScannerException	in	the	args
parameter.	You	can	check	for	this	exception	type	and	request	permission.

public	void	OnConnectionCompleted(object	sender,	object[]	args)
{
				//	If	we	have	valid	connection	error	param	will	be	null,
				//	otherwise	here	is	error	that	inform	us	about	issue	that	we	have	while	connecting	to	scanner
				if	((ScannerExceptions)args[0]	!=	ScannerExceptions.NoException)
				{
								//	ask	for	Camera	Permission	if	necessary	(android	only,	for	iOS	we	handle	permission	from	S
DK)
								if	((ScannerExceptions)args[0]	==	ScannerExceptions.CameraPermissionException)
												RequestCameraPermission();

...

If	camera	permission	is	granted	you	can	try	to	connect	on	scanner	device	again:

private	async	void	RequestCameraPermission()
{
				var	result	=	await	Permissions.RequestAsync<Permissions.Camera>();

				//	Check	result	from	permission	request.	If	it	is	allowed	by	the	user,	connect	to	scanner
				if	(result	==	PermissionStatus.Granted)
				{
								scannerControl.Connect();
				}
				else
				{
								if	(Permissions.ShouldShowRationale<Permissions.Camera>())
								{
												if	(await	DisplayAlert(null,	"You	need	to	allow	access	to	the	Camera",	"OK",	"Cancel"))
																RequestCameraPermission();
								}
				}
}

	

Connect ing	to	the	Device

t it le:	Xamarin	(v2.4.x)	;	ver:	2.7.x 63	/	74

Before	connecting,	set	the	OnAvailabilityChanged,	ConnectionStateChanged	and
ConnectionCompleted	event	handlers.

public	void	OnAvailabilityChanged(object	sender,	ScannerAvailability	availability)
public	void	OnConnectionStateChanged(object	sender,	ScannerConnectionStatus	status)
public	void	OnConnectionCompleted(object	sender,	object[]	args)

Invoke	the	connect	method	after	initializ ing	the	ScannerDevice.

//	Before	the	scanner	can	be	configured	or	used,	a	connection	needs	to	be	established
private	void	ConnectToScannerDevice()
{
				scannerControl.Connect();
}

Event	handlers	that	we	set	before	will	be	called	with	new	ScannerDevice	status
information.

Configuring	MX	Mobile	Terminals

The	MX	family	of	mobile	terminals	provides	sophisticated	device	configuration	and
management	including	saved	configurations	on	the	device.	MX	devices	come	Cognex
preconfigured	with	most	symbologies	and	features	ready	to	use.

If	you	would	like	a	custom	configuration,	reconfigure	through	DataMan	Setup	Tool,	or	the
Cognex	Quick	Setup.	Both	tools	distribute	saved	configurations	easily	to	multiple	devices
for	simple	configuration	management.

The	mobile	application	is	able	to	configure	the	MX	device	giving	you	the	option	to:	

have	multiple	scanning	applications,	each	of	which	requiring	a	different	set	of	device
settings
create	your	own	options	in	a	“known”	state,	even	though	the	device	has	been	pre-
configured	correctly

Built -in	Camera

The	cmbSDK	employs	a	default	set	of	options	for	barcode	reading	with	the	built-in
camera	of	the	mobile	device.	However,	there	are	two	important	differences	to	keep	in
mind:

The	cmbSDK	does	not	implement	saved	configurations	for	the	built-in	camera	reader.

t it le:	Xamarin	(v2.4.x)	;	ver:	2.7.x 64	/	74

Every	time	an	application	using	the	camera	reader	starts	defaults	are	used
automatically.
The	cmbSDK	does	not	enable	symbologies	by	default.	The	application	programmer
enables	all	barcode	symbologies	to	scan	in	your	application.	The	requisite	for
enabling	only	the	needed	symbologies	explicitly,	the	application	achieves	most
optimal	scanning	performance	on	the	mobile	device.	

MX-100	(for	iOS	only)

MX-100	is	a	device-case	attachment	for	iPhones	only	that	provides	additional
functionalities	to	the	built-in	camera	such	as	aiming	capabilities	and	better	illumination
control.	Being	a	hybrid	of	an	MX	device	and	a	built	in	scanner,	the	MX-100	has	settings	for
aimer	intensity,	illumination	intensity,	and	aimer	modulation	stored	on	the	device,	while
the	rest	of	the	settings,	like	symbologies	settings,	are	stored	in	the	cmbSDK.	See	the
MX-100	User	Guide	for	more	information.

Here	are	a	few	things	to	keep	in	mind	when	using	an	MX-100	device:

The	MX-100	does	not	require	a	license	to	use	the	device	camera,	optionally	a	free
licence	can	be	generated	for	tracking	purposes.
MX-100	comes	pre-configured	and	the	cmbSDK	has	the	following	symbologies
enabled	by	default:

Code	39
Code	128
Databar
PDF417
QR
UPC/EAN

The	cmbSDK	is	extended	with	a	cache	mechanism	to	strengthen	optical
communication	with	MX-100.	The	cache	stores	all	MX-100	settings	and	it	is	transparent
and	available	in	cmbSDK.	Initializ ing	and	updating	of	the	cache	is	the	responsibility	of
cmbSDK.	There	are	different	caches	for	different	settings:

Persistent	cache:	Settings/values	that	rarely	change	(if	at	all)	and	SDK	can	cache
on	the	iPhone	for	an	extended	period	of	time.	These	items	are	the	MX-100	Serial
number,	model	number,	and	firmware	version.	The	persistent	cache	is	updated	in
every	7	days.
Session	cache:	Settings/values	that	may	change	while	an	application	is	using	an
MX-100	(not	likely),	but	should	be	read	from	the	MX-100	on	SDK	load/initial
connection	to	the	MX-100.	These	items	are:	Aimer	intensity,	Aimer	modulation,
Aimer	timeout,	Illumination	intensity,	and	Illumination	state.
By	default,	the	session	cache	will	be	maintained	optimistically	for	the	best
performance.	The	SDK	assumes	that	another	application	is	not	changing	the
settings	of	the	aimer,	the	SDK	only	needs	to	read	the	aimer's	settings	one	time,
when	the	initial	connection	is	established.

t it le:	Xamarin	(v2.4.x)	;	ver:	2.7.x 65	/	74

NOTE:	If	another	application	changes	the	aimer	settings	the	cache	may	become	out
of	sync	with	the	aimer.	In	such	a	case	the	cmbSDK	gives	the	possibility	to	handle	the
Session	cache	pessimistically	where	the	aimer's	configuration	is	loaded	each	time	the
application	is	resumed.	This	behavior	is	accomplished	by	adding	an	option	flag	to	the
camera	connector:	PreviewOpt ion.Pessimist icCaching.

Enabling	Symbologies

CmbSDK	does	not	enable	any	symbologies	by	default	for	barcode	reading	with	the	built-
in	camera	of	the	mobile	device.	You	must	enable	all	barcode	symbologies	your
application	needs	to	scan	to	achieve	optimal	scanning	performance.

Individual	symbologies	can	be	enabled	using	the	following	method	of	the	ScannerControl
class:

public	void	SetSymbologyEnabled(Symbology	symbology,	bool	enable)

All	symbologies	used	for	the	symbology	parameter	in	this	method	can	be	found	in
Symbology	enum.

Examples

//	Explicitly	enable	the	symbologies	we	need
scannerControl.SetSymbologyEnabled(Symbology.Datamatrix,	true);
scannerControl.SetSymbologyEnabled(Symbology.C128,	true);

You	can	also	use	the	same	method	to	disable	symbologies:

//	Explicitly	disable	symbologies	we	know	we	don't	need
scannerControl.SetSymbologyEnabled(Symbology.Codabar,	false);

You	can	implement	SymbologyEnabled	event	handler	to	check	the	result	of	the
symbology	change:

//	SymbologyEnabled	listener	(args:	Symbology	symbology,	bool	isEnabled,	string	error)
public	void	OnSymbologyEnabled(object	sender,	object[]	args)
{
				if	((string)args[2]	!=	null)
								Debug.WriteLine("Failed	to	enable/disable	"	+	args[0].ToString());

t it le:	Xamarin	(v2.4.x)	;	ver:	2.7.x 66	/	74

				else
								Debug.WriteLine(((Symbology)args[0]).ToString()	+	((bool)args[1]	?	"	enabled"	:	"	disabled")
);
}

	

Illuminat ion	Control

If	your	scanner	device	is	equipped	with	illumination	lights,	you	can	control	them	using	this
DMCC:

scannerControl.SendCommand("SET	LIGHT.INTERNAL-ENABLE	ON");

You	can	control	lights	while	scanning	preview	is	active,	or	if	you	send	this	DMCC	before
starting	the	scanner	you	will	set	the	initial	value	for	lights.

Not	all	devices	and	device	modes	support	illumination	control.

Camera	Zoom	Sett ings

If	the	built-in	camera	of	a	mobile	device	is	used	as	the	reader	device,	you	can	configure
zoom	levels	and	how	they	are	used.	There	are	three	zoom	levels:

normal:	not	zoomed	(100%)
level	1	zoom	(150%	on	Android	by	default)
level	2	zoom	(300%	on	Android	by	default)

The	SET	CAMERA.ZOOM-PERCENT	[100-MAX]	[100-MAX]	command	is	for	configuring	how
far	the	two	levels	zoom	in	percentage.	100	is	not	zoomed	and	MAX	(goes	up	to	1000)
zooms	as	far	as	the	device	is	capable	of.	The	first	argument	is	used	for	setting	level	1
zoom,	and	the	second	for	level	2	zoom.

You	can	check	the	current	zoom	setting	with	the	GET	CAMERA.ZOOM-PERCENT	command,
which	returns	two	values:	level	1	and	level	2	zoom.

Example

scannerControl.SendCommand("SET	CAMERA.ZOOM-PERCENT	250	500");

t it le:	Xamarin	(v2.4.x)	;	ver:	2.7.x 67	/	74

Note:	The	camera	needs	to	be	started	within	cmbSDK	at	least	once	to	have	a	valid
maximum	zoom	level.	It	means	that	if	you	set	the	zoom	level	to	1000	and	the	device
can	only	go	up	to	600,	the	GET	CAMERA.ZOOM-PERCENT	command	returns	1000	as
long	as	camera	is	not	opened,	but	it	returns	600	afterwards.

GET/SET	CAMERA.ZOOM	0-2	is	another	command	that	sets	the	zoom	level	or	returns	the
actual	setting.	Possible	values	for	the	SET	command	are:

0	-	normal	(not	zoomed)
1	-	level	1	zoom
2	-	level	2	zoom

You	can	call	this	command	before	or	even	during	scanning,	and	the	zoom	goes	up	to	the
configured	level.	If	scanning	is	finished,	the	value	is	reset	to	normal	behavior	(0).

Example

scannerControl.SendCommand("SET	CAMERA.ZOOM	2");

	

Camera	Overlay	Customizat ion

When	using	the	mobile	device's	camera,	cmbSDK	allows	you	to	see	the	camera	preview
inside	a	preview	container	or	in	full	screen.	This	preview	also	contains	a	customizable
overlay.	The	cmbSDK	camera	overlay	features	buttons	for	zooming,	flashing	and	closing
the	scanner,	and	a	progress	bar	indicating	the	scan	timeout.

To	use	the	legacy	camera	overlay	originally	used	in	cmbSDK	v2.0.x	and	ManateeWorks
SDK,	use	this	before	initializ ing	the	ScannerDevice:

private	void	CreateScannerDevice()
{
				
				if	(param_deviceClass	==	ScannerDevice.PhoneCamera)
				{
								scannerControl.SetOverlay(ScannerOverlay.LEGACY);

								scannerControl.GetPhoneCameraDevice(ScannerCameraMode.NoAimer,	ScannerPreviewOption.Defaults
,	true);
				}

t it le:	Xamarin	(v2.4.x)	;	ver:	2.7.x 68	/	74

The	customization	of	the	legacy	camera	overlay	is	limited,	so	it	is	recommended	to
use	the	cmbSDK	overlay.

When	using	the	cmbSDK	overlay:

1.	 Copy	the	layout	files	from	the	Resources/Android/layout	directory	into	your	Android
platform	specific	project	and	modify	them.	Use	cmb_scanner_part ial_view.xml	if
scanning	is	started	inside	a	container	(partial	view),	and	use	cmb_scanner_view.xml
if	scanning	is	started	in	full	screen.	Same	for	iOS,	copy	the	xib	files	from	the
Resources/iOS	directory	into	your	iOS	platform	specific	project	and	modify	them.	Use
CMBScannerPart ialView.xib	if	scanning	is	started	inside	a	container	(partial	view),
and	use	CMBScannerView.xib	if	scanning	is	started	in	full	screen.

t it le:	Xamarin	(v2.4.x)	;	ver:	2.7.x 69	/	74

2.	 Modify	the	layout	and	xib	according	to	your	needs.	For	example,	you	can	change	the
sizes,	positions	or	color	of	the	views,	remove	views	and	add	your	own	views,	like	an
overlay	image.

CmbSDK	accesses	the	views	it	uses	(zoom,	flash,	close	buttons,	the	view	used	for
drawing	lines	on	the	corners,	and	the	progress	bar)	with	the	tag	attribute.	Do	not
change	the	tag	attribute,	otherwise	cmbSDK	cannot	recognize	the	views	and
continues	to	function	as	if	they	are	removed.

Both	the	cmbSDK	and	the	legacy	overlay	allow	you	to	change	the	images	used	on	the
zoom	and	flash	buttons	if	your	images	have	the	same	name	as	the	names	cmbSDK
uses.	You	can	find	the	images	and	names	used	in	cmbSDK	in	the	Resources/drawable-
mdpi	and	drawable-hdpi	directories	for	Android	and
Resources/MWBScannerImages.xcassets	for	iOS.

Both	the	cmbSDK	and	the	legacy	overlay	allow	you	to	change	the	color	and	width	of	the
rectangle	that	is	displayed	when	a	barcode	is	detected.	These	changes	need	to	be	done
inside	ConfigureScannerDevice()	method	(after	we	have	valid	connection	to	scanner
device).

Example:

private	void	ConfigureScannerDevice()
{
			scannerControl.SetLegacyOverlayLocationLine(255,	System.Drawing.Color.Yellow,	6.0f,	true);

...

	

Advanced	Configurat ion	using	DataMan	Control	Commands

t it le:	Xamarin	(v2.4.x)	;	ver:	2.7.x 70	/	74

Cognex	scanning	devices	implement	DataMan	Control	Commands	(DMCC)	for	configuring
and	controlling	the	device.	Every	feature	of	the	device	can	be	controlled	using	this	text-
based	language.	The	API	provides	a	method	for	sending	DMC	commands	to	the	device.
Commands	exist	both	for	setting	and	querying	configuration	properties.	DMC	commands
are	same	for	all	platforms	and	frameworks.

The	Appendix	includes	the	complete	DMCC	reference	for	the	camera	reader.

The	DMCCs	for	MX	mobile	terminals	and	other	supported	devices	can	be	found	in
their	respective	manuals	available	through	Setup	Tool.

The	following	examples	show	different	DMCC	sent	to	the	device	for	more	advanced
configuration.

Examples

//Change	the	scan	direction	to	omnidirectional	
scannerControl.SendCommand("SET	DECODER.1D-SYMBOLORIENTATION	0");
//Change	live-stream	preview's	scanning	timeout	to	10	seconds	
scannerControl.SendCommand("SET	DECODER.MAX-SCAN-TIMEOUT	10");

You	can	also	set	ResponseReceived	event	handler	to	receive	response	from	the	send
command:

//	ResponseReceived	listener	after	we	send	DMCC	command	(args:	string	payload,	string	error,	string	
dmcc)
public	void	OnResponseReceived(object	sender,	object[]	args)
{
				if	((string)args[1]	!=	null)
								Debug.WriteLine("Failed	to	execute	DMCC");
				else
								Debug.WriteLine("Response	for	"	+	(string)args[2]	+	":	"	+	(string)args[0]);
}

	

Resett ing	the	Configurat ion

NOTE:	This	section	includes	resetting	to	CmbSDK	defaults	and	does	not	include
instruction	on	resetting	to	factory	defaults.

CmbSDK	includes	a	method	for	resetting	the	device	to	its	default	settings.	In	case	of	an
MX	mobile	terminal,	the	default	setting	are	the	saved	configurations.	In	case	of	a	built-in

https://cmbdn.cognex.com/knowledge/cognex-mobile-barcode-sdk-for-android/appendix-dmcc-for-the-camera-reader

t it le:	Xamarin	(v2.4.x)	;	ver:	2.7.x 71	/	74

camera,	the	default	settings	are	the	defaults	identified	in	the	Appendix,	where	no
symbologies	are	enabled.

To	reset	the	device	send	this	DMCC:

scannerControl.SendCommand("CONFIG.DEFAULT");

When	using	an	MX	mobile	terminal,	there	are	three	states	that	we	can	distinguish:

Factory	defaults
Saved	configuration:	when	there	were	different	configurations	set	on	the	device	and
CONFIG.SAVE	DMCC	was	called.
Session	configuration:	when	you	make	changes	on	the	saved	configuration,	the
changes	are	valid	until	the	MX	Mobile	Terminal	is	rebooted.	If	it	is	rebooted,	it	has	the
saved	configuration	state.

Scanning	Barcodes

With	a	properly	configured	reader,	you	are	ready	to	scan	barcodes.	This	is	simply
accomplished	by	calling	the	StartScanning()	method	from	your	scannerControl.	What
happens	next	is	based	on	the	type	of	ScannerDevice	and	how	it	has	been	configured.
Generally:

If	using	an	MX	terminal,	press	a	trigger	button	on	the	device	to	turn	the	scanner	on
and	read	a	barcode.
If	using	the	camera	reader,	the	cmbSDK	starts	the	camera,	displays	the	configured
live-stream	preview,	and	begins	analyzing	the	frames	from	the	video	stream,	looking
for	a	configured	barcode	symbology.

Scanning	stops	under	one	of	the	following	conditions:

The	reader	found	and	decoded	a	barcode.
The	user	released	the	trigger	or	pressed	the	stop	button	on	the	live-stream	preview
screen.
The	camera	reader	timed	out	without	finding	a	barcode.
The	application	program	calls	the	StopScanning()	method.

When	a	barcode	is	decoded	successfully,	you	will	receive	a	ScannedResult	list	in	your
ReadResultReceived	event:

//	This	is	called	after	scanning	has	completed,	either	by	detecting	a	barcode,	canceling	the	scan	by
	using	the	on-screen	button	or	a	hardware	trigger	button,	or	if	the	scanning	timed-out
public	void	OnReadResultReceived(object	sender,	List<ScannedResult>	results)

https://cmbdn.cognex.com/knowledge/cognex-mobile-barcode-sdk-for-android/appendix-dmcc-for-the-camera-reader

t it le:	Xamarin	(v2.4.x)	;	ver:	2.7.x 72	/	74

To	simply	display	a	ScannedResult	after	scanning	a	barcode:

public	void	OnReadResultReceived(object	sender,	List<ScannedResult>	results)
{
				if	(results.Count	>	0)
				{
								ScannedResult	readResult	=	results[0];

								lblCode.Text	=	readResult.ResultCode;
				}
}

	

Handling	Disconnect ion

1.	Disconnection:

There	may	be	cases	when	a	device	disconnects	due	to	low	battery	condition	or	manual
cable	disconnection.	These	cases	can	be	detected	in	the	ConnectionStateChanged	event
handler.

Note:	The	OnAvailabilit yChanged	method	is	also	called	when	the	device
becomes	physically	unavailable.	It	means	that	the	(re)connection	is	not	possible.
Always	check	the	availability	property	of	the	scanner	device	object	before	trying	to
call	the	Connect 	method.

	

2.	Re-Connection:

After	returning	to	your	application	from	inactive	state,	the	reader	device	remains
initialized	but	not	connected.	There	is	no	need	for	re initializ ing	the	SDK	but	you	need	to
re-connect.	For	iOS	we	are	doing	that	in	ScannerControl	renderer	while	for	Android	need
to	be	done	manually	when	page	is	resumed:

//	When	an	page	is	disappeared,	the	connection	to	the	scanning	device	needs
//	to	be	closed;	thus	when	we	are	resumed	(Appear	this	page	again)	we
//	have	to	restore	the	connection	(assuming	we	had	one).
//	This	is	used	for	android	only.
//	For	iOS	we	use	Observer	that	is	created	in	ScannerControl	class	in	iOS	platform	specific	project
//--
if	(Device.RuntimePlatform	==	Device.Android	&&	await	Permissions.CheckStatusAsync<Permissions.Camer

t it le:	Xamarin	(v2.4.x)	;	ver:	2.7.x 73	/	74

a>()	==	PermissionStatus.Granted)
{
				ConnectToScannerDevice();
}

	

Migrat ion	from	mwSDK	to	cmbSDK

Difference	between	mwSDK	and	cmbSDK

The	Manatee	Works	Barcode	Scanner	SDK	has	been	fully	integrated	into	the	Cognex
Mobile	Barcode	SDK	(cmbSDK).	Therefore,	we	are	shifting	our	focus	to	the	cmbSDK.

The	good	news	is	that	the	cmbSDK	is	backward	compatible	with	the	MW	SDK.	The
cmbSDK	simply	adds	a	higher-level	API	to	the	scanning	methods	that	utilize	the	camera
of	a	smartphone	or	tablet.	Or,	you	can	continue	to	use	the	lower-level	methods	you	have
become	familiar	with	in	the	Manatee	Works	SDK.	Your	account,	login,	license(s),	and
key(s)	remain	the	same.	If	you	do	decide	to	program	to	the	higher-level	API,	you	will
have	the	added	benefit	of	your	app(s)	supporting	the	Cognex	MX	Series	mobile	barcode
readers,	and	MX	Series	mobile	terminals,	with	a	single	code	base.

Remove	mwSDK

To	avoid	collision	between	mwSDK	and	cbmSDK	you	need	to	remove	reference	that
refer	to	old	MWBarcodeScanner.dll	file 	in	your	platform	specific	project.

Add	cmbSDK

Next	copy	new	XamarinDataManLibrary.dll	file 	that	contain	cmbSDK	in	your	platform
specific	project	directory,	and	add	new	reference	to	that	dll.

Please	navigate	to	this	url	to	check	step	by	step	how	to	integrate	cmbSDK	inside	your

https://cmbdn.cognex.com/v2.2.x/knowledge/xamarin/introduction

t it le:	Xamarin	(v2.4.x)	;	ver:	2.7.x 74	/	74

Xamarin	project.

After	that	please	remove	all	API's	and	methods	that	you	are	using	from	mwSDK,	and
follow	our	guide	from	here	to	see	how	to	implement	cmbSDK	in	your	project.

Here	are	some	of	the	main	differences	in	code	between	mwSDK	and	cmbSDK:

1.	 Init ialize,	create	and	connect 	reader	device
-	Using	mwSDK	we	don't	have	that	ReaderDevice	object	and	we	use	API	methods
from	BarcodeScanner	object	to	initialize	decoder	before	starting	the	scanner
process:	set	active	codes,	set	scanning	rect,	set	decoder	level,	register	sdk,	etc.
When	we	use	cmbSDK	all	this	things	are	done	in	code	behind	with	default	values
when	we	create	ReaderDevice	object.	Here	some	of	the	settings	can	be	set	in
constructor	as	input	parameter	and	another	one	can	be	set/changed	after	we	create
and	connect	to	reader	device.	Using	cmbSDK	not	only	creating	reader	device	in
enough	to	start	scanning	process,	we	also	need	to	connect	to	reader	device	and	set
necessary	callbacks	that	will	handle	response	from	connection	state	changed,
availability,	result	received,	etc.
	

2.	 Start 	scanning	process
-	With	mwSDK	after	we	initialize	decoder	we	are	ready	to	start	the	scanning.	There
are	two	different	methods	for	starting	the	scanner.One	for	partial	view	(where	we	can
set	size	as	input	parameter)	and	one	for	full	screen.	Also	we	can	choose	if	we	want
this	methods	to	return	object	result	or	we	will	expect	result	in	a	callback	function.
Using	cmbSDK	there	is	only	one	method	to	start	the	scanning	process	and	comes
from	ReaderDevice	object	(readerDevice.startScanning()).	We	can't	start	scanning
process	if	we	don't	have	valid	connection	to	reader	device.	Here	if	we	want	to	use	full
screen	mode	when	we	create	reader	device	in	constructor	will	send	null	as	input
parameter	for	previewContainer,	or	if	we	want	to	use	partial	view	we	must	to	create
that	container	in	our	layout		and	send	as	input	parameter.	Result	from	scanning
process	will	be	received	in	onReadResultReceived	callback	function.
	

3.	 Result 	received
-	If	we	have	successful	read	or	we	stop	the	scanning	process	and	have	no	read,	result
object	will	be	received	in	onReadResultReceived.	In	cmbSDK	result	object	is	more
extended	than	in	mwSDK.	From	that	object	we	can	read	our	barcode	result,
symbology,	image	from	last	frame,	SVG	result,	etc.

https://cmbdn.cognex.com/v2.2.x/knowledge/xamarin/introduction

