
1 / 22

Cognex Mobile Barcode SDK for iOS (v2.7.x)

Overview

Cognex Mobile Barcode SDK (cmbSDK) is a tool for developing mobile barcode scanning applications. CmbSDK is based on Cognex's DataMan technology and the Manatee Works Barcode Scanning
SDK allowing you to create applications for barcode scanning on mobile devices. Mobile devices used for barcode scanning are supported smartphones, tablets and the MX Series industrial barcode readers. CmbSDK
abstracts the device through a CMBReaderDevice connection layer. Once the application establishes connection with the reader, a single and unified API serves as an interface to configure the device, without writing too
much conditional code.

CmbSDK provides two basic CMBReaderDevice connection layers:

MX reader for barcode scanning with devices like the MX-1000, MX-1100, and MX-1502
Camera reader for barcode scanning with the built-in camera of the mobile device

Barcode Scanning with an MX Mobile Terminal

The cmbSDK supports Cognex’s MX Series Mobile Terminals with features using cmbSDK:

Hardware triggers: MX Mobile Terminals include two built-in hardware triggers for barcode scanning. MX Mobile Terminals support an optional accessory, the pistol grip with a trigger.
Illumination and aiming: MX Mobile Terminals have built-in illumination and aiming, rendering the live preview on the smartphone's screen unnecessary.
Configurations: Export and import configuration sets to MX Mobile Terminals using Cognex’s DataMan Setup Tool for Windows, the Quick Setup mobile application, or cmbSDK.
High-capacity battery: MX Mobile Terminals have an integrated battery that powers the MX scanning engine and the mobile device. The optional pistol grip includes a second battery that doubles the power capacity
of the MX Mobile Terminal.

Getting your MX Mobile Terminal Enabled App into the App Store

NOTE: Before submitting your MX Mobile Termnal Enabled app to the Apple App Store, make sure to add your app to the Cognex MFi product plan. This is a critical step for your app for Apple to approve your app. If
your app is not added Apple will reject the app.

Submit a request on https://cmbdn.cognex.com/mfi/apply for each iOS app you want to publish to the App Store. You can create MFi request in advance when app name and bundle ID is fixed, this way you can speed up
later your publish process to App Store.

Once your MFI product plan request was processed, you are notified by e-mail about further steps, at which time you can submit your app to Apple directly.

NOTE: The e-mail notification about the MFI process means that Cognex has placed the request to Apple.It usually takes Apple 3-7 days to process the request.

Update your app’s notes before submitting to the App Store:

1. Log in to iTunes Connect
2. Click on My Apps
3. Select the app you would like to submit
4. Click on the app version on the left side of the screen
5. Scroll down to App Review Information
6. Update Notes with:

The related product plan is:
Accessory Name: DataMan 9050
Product Plan ID: 144826-0004
Status: Active Type: Manufacturing Process
Phase: Production

7. Click Save
8. After completing all changes, click the Submit for Review button at the top of the App version information page

Debugging on MX Mobile Terminal

Connect your mobile device (phone or tablet) to your PC via the USB or lightning port to start debugging. If an MX Mobile Terminal is attached to your mobile device via the USB or lightning port while your application is
running, you need to debug your application via Wi-Fi.

Debugging on iPhone using XCode:

Prerequisites:

XCode 9 or newer
iPhone running iOS 11 or newer

If you are running your application with XCode, make sure your device is plugged in via lightning cable and enable Connect via network on your mobile device:

1. Open XCode and choose Window > Devices and Simulators from the top menu.
2. Select your device from the connected list of devices on the left side and check the Connect via network checkbox.

Now you can close the Devices window and start debugging your application without using the lightning cable or USB.

Debugging on iPhone using Xamarin or Visual Studio:

Prerequisites.

Xamarin

https://cmbdn.cognex.com/mfi/apply

2 / 22

Visual Studio
iPhone running iOS 11 or newer

1. Make sure your iPhone is connected using the lightning cable and open your Xamarin.IOS project.
2. Choose Options by right-clicking on the project file.
3. Navigate to iOS Debug from the left menu and check the Debug over WiFi checkbox.

NOTE: Launch the application through the USB or lightning cable initially.

After launching the application, you can safely unplug and continue your debugging session over Wi-Fi.

Barcode Scanning with a Smartphone

Barcode Scanning with a Smartphone or Tablet

The differences in the barcode scanning capabilities of smartphones and purpose-built scanners result in different user experience, impacting the design of the mobile barcode scanning application. By following a few
simple guidelines, you can develop applications with the cmbSDK that work the same way when using an MX Mobile Terminal or the built-in camera of a mobile device. Here are some links to start from:

To initiate barcode scanning without a dedicated hardware trigger, see Mobile Device Triggering.
To aim for barcode scanning with a smartphone that does not have an aimer, see Mobile Device Aiming.
To choose the most suitable orientation for barcode scanning, see Mobile Device Orientation.
To reduce the CPU usage of the mobile device when it performs image analysis and barcode decoding, see Optimizing Mobile Device Performance.

Mobile Device Triggering

Without a hardware trigger, mobile devices must use alternative methods to initiate barcode scanning. The cmbSDK supports three methods to trigger barcode scanning:

Application or workflow driven trigger: The application code or the business logic/workflow of the application invokes the scanning module by calling the startScanner() function.
Virtual trigger: To start or stop the scanning process, the application provides a virtual button on the screen. Depending on the application design, you need to press and hold the virtual button to keep the scanner
running invoking the scanning module.
Simulated trigger: Press one of the volume control buttons to start or stop the scanning process just like when you pull a trigger on a purpose-built scanner.

Mobile Device Aiming

The built-in camera provides a live-stream preview on the display of the mobile device that can be in partial or full screen, in portrait or landscape orientation, for barcode aiming. Reposition the mobile device until the
barcode appears in the field of view of the built-in camera and the application decodes it.

The cmbSDK supports passive aimers: devices attached to the mobile device or its case that use the LED flash of the device as a light source to project an aiming or targeting pattern. The mobile device can project an
aimer pattern similar to a purpose-built scanner so live-preview is not needed.

NOTE: When using the LED flash as an aimer general scanning illumination is not available.

Mobile Device Orientation

The cmbSDK supports portrait orientation, landscape orientation and auto-rotation for both the presentation of the barcode preview and the scan direction. Mobile devices can scan most barcodes regardless of the
orientation of the application and the mobile device.

For better read performance read QR, Data Matrix, and Maxicode in portrait orientation, and long codes like PDF417 in landscape orientation.

Optimizing Mobile Device Performance

The cmbSDK is optimized for mobile environment, but image analysis and barcode decoding are still CPU intensive activities. Since these processes share the CPU of the mobile device with the mobile operating system
(OS), services, and other applications, the following processes optimize your barcode scanning application and limit it to only using the features of the cmbSDK that they need.

To optimize your application:

Enable decoding only for the barcode types the application needs to scan.

https://cmbdn.cognex.com/v2.2.x/knowledge/cognex-mobile-barcode-sdk-for-android/barcode-scanning-with-a-smartphone-android/mobile-device-triggering
https://cmbdn.cognex.com/v2.2.x/knowledge/cognex-mobile-barcode-sdk-for-android/barcode-scanning-with-a-smartphone-android/mobile-device-aiming
https://cmbdn.cognex.com/v2.2.x/knowledge/cognex-mobile-barcode-sdk-for-android/barcode-scanning-with-a-smartphone-android/mobile-device-orientation
https://cmbdn.cognex.com/v2.2.x/knowledge/cognex-mobile-barcode-sdk-for-android/barcode-scanning-with-a-smartphone-android/optimizing-mobile-device-performance

3 / 22

NOTE: The cmbSDK supports the decoding of almost 40 different barcode types and subtypes, enabling all results in low performance and unexpected errors.

Do not enable certain symbologies and/or advanced features at the same time. PDF417, DataMatrix and Dotcode are the most CPU demanding codes, enabled with advanced features they can slow down decoding
time.
Optimize your camera resolution. By default, the cmbSDK uses HD images for barcode decoding.
Use an appropriate decoder effort level. The cmbSDK has a configurable effort level that controls how aggressively it performs image analysis. The cmbSDK uses a default value (level 2) that is sufficient for most
barcodes. Using a higher level can result in better decoding of poorer quality barcodes, resulting in slower performance.

NOTE: No barcode symbologies are enabled by default, when the cmbSDK is initialized for use with the mobile device's built-in camera.

Using cmbSDK

Using cmbSDK in XCode

Set up your application to use the iOS cmbSDK:

1. Open XCode and start a new project.

2. Add the following lib and frameworks to your project:

* SystemConfiguration.framework
* AVFoundation.framework
* CoreGraphics.framework
* CoreMedia.framework
* CoreVideo.framework
* MediaPlayer.framework
* Security.framework
* AudioToolbox.framework
* cmbSDK.framework

cmbSDK is also available by CocoaPods as "Cognex.cmbSDK" pod.

3. Go to your project's Info.plist file and add the Privacy - Camera Usage Description or NSCameraUsageDescription to display a message about how your application uses the camera of the user's mobile device.

4. If you are using cmbSDK with an MX Mobile Terminal, you also need to add Supported external accessory protocols or UISupportedExternalAccessoryProtocols to com.cognex.dmcc in your project's Info.plist.
(You have to create an MFi Request in such case before publishing your app in Apple App Store. You can read further details in Getting your MX Mobile Terminal Enabled App into the App Store section.)

Creating a Swift Bridging Header

To write your app in Swift, you need a bridging header to use the cmbSDK:

1. Create the header by selecting File -> New File -> Header File
2. Name the header file and save it, for example YourApp-Bridging-Header
3. Open your project settings, under the Build Settings tab search for "Objective-C Bridging Header" and add "$(PROJECT_DIR)/YourApp/YourApp-Bridging-Header.h". Replace YourApp with the name of your app,

and YourApp-Bridging-Header.h with the name of your bridging header.
4. Open your bridging header and import the headers that you would like to use from the cmbSDK. For example, import the following headers for basic functionality:

#import "CMBReaderDevice.h"
#import "CMBReadResult.h"
#import "CMBReadResults.h"

Writing a Mobile Application

The cmbSDK has been designed to provide a high-level, abstract interface for supported scanning devices. This includes not only the MX series of mobile terminals, but also for applications that intend to use the mobile
device camera as the imaging device. The intricacies of communicating with and managing these devices is encapsulated within the SDK itself: leaving the application to just connect to the device of choice, then using it.

The primary interface between your application and a supported barcode scanning device is the CMBReaderDevice class. This class represents the abstraction layer to the device itself, handling all communication as well
as any necessary hardware management (e.g., for smartphone scanning).

Perform the following steps to use the cmbSDK:

1. Initialize a Reader Device for the type of device you want to use: MX reader or camera reader.

2. Connect the Reader Device.

3. Configure the reader (if necessary).

https://cmbdn.cognex.com/knowledge/-cognex-mobile-barcode-sdk-for-ios/getting-your-mx-mobile-terminal-enabled-app-into-the-app-store

4 / 22

4. Start scanning.

Initialization, connection, and configuration generally need to be performed only once in your application, except for the following cases:

An MX reader can become disconnected (times out from disuse, dead battery, etc.). A method has been provided to handle this case, and is discussed in a later section.
Your application has been designed to allow the user to change devices.The cmbSDK is explicitly designed to support this: your application simply disconnects from the current device and establishes a new
connection to a different device. The sample application has been written to explicitly demonstrate this capability, which you get when downloading the CmbSDK.

Setting up an Application to Use cmbSDK for iOS

Perform the following steps to set up and start using cmbSDK:

1. Import the following package members, or the classes you use:

Swift
Objective-C

import cmbSDK

#import <cmbSDK/cmbSDK.h>

2. According to your needs:

If you want to show partial camera preview, you need a View container, for example a UIView
If you want to use full screen preview (default) you do not need any additional containers.

For example if we want to use partial view in our sample application: add a UIView in the Main storyboard with the desired dimensions and constraints, and use it in reader device constructor (previewView
parameter) when reader device is initialized.

If you want to display the last scanned image, add a UIImageView for container instead of UIView for showing the last frame of a preview or scanning session.

If you want to display the scanned result as a text, add UILabel.

3. Set up the following interfaces to monitor the connection state of the reader and receive information about the read code:

Swift
Objective-C

// MARK: OBSERVER METHODS

//--
// When an applicaiton is suspended, the connection to the scanning device is
// automatically closed by iOS; thus when we are resumed (become active) we
// have to restore the connection (assuming we had one). This is the observer
// we will use to do this.
//--
@objc func appBecameActive() {
 if readerDevice != nil && readerDevice.availability == CMBReaderAvailibilityAvailable && readerDevice.connectionState != CMBConnectionStateConnecting && readerDevice.connectionState !
 readerDevice.connect(completion: { error in
 if error != nil {
 // handle connection error
 }
 })
 }
}

// MARK: VIEWCONTROLLER METHODS

override func viewDidLoad() {
 super.viewDidLoad()
 // Add our observer for when the app becomes active (to reconnect if necessary)
 NotificationCenter.default.addObserver(self, selector: #selector(self.appBecameActive), name:UIApplication.didBecomeActiveNotification, object: nil)
}

// MARK: MX Delegate methods

// This is called when a MX-1xxx device has became available (USB cable was plugged, or MX device was turned on),
// or when a MX-1xxx that was previously available has become unavailable (USB cable was unplugged, turned off due to inactivity or battery drained)
func availabilityDidChange(ofReader reader: CMBReaderDevice) {
 self.clearResult()

 if (reader.availability != CMBReaderAvailibilityAvailable) {
 showAlert(title: nil, message: "Device became unavailable")
 } else if (reader.availability == CMBReaderAvailibilityAvailable) {
 self.connectToReaderDevice()
 }
}

// This is called when a connection with the self.readerDevice has been changed.
// The self.readerDevice is usable only in the "CMBConnectionStateConnected" state
func connectionStateDidChange(ofReader reader: CMBReaderDevice) {
 self.isScanning = false
 self.clearResult()

 if self.readerDevice.connectionState == CMBConnectionStateConnected {
 // We just connected, so now configure the device how we want it
 self.configureReaderDevice()
 }

 self.updateUIByConnectionState()
}

// This is called after scanning has completed, either by detecting a barcode, canceling the scan by using the on-screen button or a hardware trigger button, or if the scanning timed-out

https://cmbdn.cognex.com/v2.3.x/knowledge/-cognex-mobile-barcode-sdk-for-ios/using-cmbsdk/using-the-camera-reader-or-mx-100-barcode-scanner

5 / 22

func didReceiveReadResult(fromReader reader: CMBReaderDevice, results readResults: CMBReadResults!) {
 self.isScanning = false
 self.btnScan.isSelected = false

 if (readResults.subReadResults != nil) && readResults.subReadResults.count > 0 {
 scanResults = readResults.subReadResults as! [CMBReadResult]
 self.tvResults.reloadData()
 } else if readResults.readResults.count > 0 {
 scanResults = [readResults.readResults.first as! CMBReadResult]
 self.tvResults.reloadData()
 }
}

#pragma mark OBSERVER METHODS

//--
// When an applicaiton is suspended, the connection to the scanning device is
// automatically closed by iOS; thus when we are resumed (become active) we
// have to restore the connection (assuming we had one). This is the observer
// we will use to do this.
//--
-(void)appBecameActive {

 if (self.readerDevice != nil &&
 self.readerDevice.availability == CMBReaderAvailibilityAvailable &&
 self.readerDevice.connectionState != CMBConnectionStateConnecting &&
 self.readerDevice.connectionState != CMBConnectionStateConnected)
 {
 [self.readerDevice connectWithCompletion:^(NSError *error) {
 if (error) {
 // handle connection error
 }
 }];
 }
}

#pragma mark VIEWCONTROLLER METHODS

-(void)viewDidLoad {
 [super viewDidLoad];

 // Add our observer for when the app becomes active (to reconnect if necessary)
 [[NSNotificationCenter defaultCenter] addObserver:self
 selector:@selector(appBecameActive)
 name:UIApplicationDidBecomeActiveNotification object:nil];
}

#pragma mark MX Delegate methods

// This is called when a MX-1xxx device has became available (USB cable was plugged, or MX device was turned on),
// or when a MX-1xxx that was previously available has become unavailable (USB cable was unplugged, turned off due to inactivity or battery drained)
- (void)availabilityDidChangeOfReader:(CMBReaderDevice *)reader
{
 [self clearResult];

 if (reader.availability != CMBReaderAvailibilityAvailable)
 {
 [self showAlertWithTitle:@"Device became unavailable" message:nil];
 }
 else if (self.readerDevice.availability == CMBReaderAvailibilityAvailable) {
 [self connectToReaderDevice];
 }
}

// This is called when a connection with the self.readerDevice has been changed.
// The self.readerDevice is usable only in the "CMBConnectionStateConnected" state
- (void)connectionStateDidChangeOfReader:(CMBReaderDevice *)reader
{
 self.isScanning = NO;
 [self clearResult];

 if (self.readerDevice.connectionState == CMBConnectionStateConnected){
 // We just connected, so now configure the device how we want it
 [self configureReaderDevice];
 }

 [self updateUIByConnectionState];
}

// This is called after scanning has completed, either by detecting a barcode, canceling the scan by using the on-screen button or a hardware trigger button, or if the scanning timed-out
- (void)didReceiveReadResultFromReader:(CMBReaderDevice *)reader results:(CMBReadResults *)readResults
{
 self.isScanning = false;
 [self.btnScan setSelected:self.isScanning];

 if (readResults.subReadResults && readResults.subReadResults.count > 0) {
 scanResults = readResults.subReadResults;
 [self.tvResults reloadData];
 } else if (readResults.readResults.count > 0){
 CMBReadResult *result = readResults.readResults.firstObject;
 scanResults = @[result];
 [self.tvResults reloadData];
 }
}

4. Instantiate a CMBReaderDevice object.

Using the MX Reader

Initializing the CMBReaderDevice for use with an MX mobile terminal like the MX-1000, MX-1100, or MX-1502 is easy: simply create the reader device using the MX device method (it requires no parameters), and set the
appropriate delegate (normally self):

Swift
Objective-C

6 / 22

let readerDevice:CMBReaderDevice = CMBReaderDevice.readerOfMX()
readerDevice.delegate = self

CMBReaderDevice *readerDevice = [CMBReaderDevice readerOfMXDevice];
readerDevice.delegate = self;

The availability of the MX mobile terminal can change when the device turns ON or OFF, or if the lightning cable gets connected or disconnected. You can handle those changes using the following
CMBReaderDeviceDelegate method.

Swift
Objective-C

func availabilityDidChange(ofReader reader: CMBReaderDevice)

- (void)availabilityDidChangeOfReader:(CMBReaderDevice *)reader

Using other Cognex network device

If you want to connect to a Cognex device on the network (e.g handheld or fixed mount) you have to use another framework named as NetworkDiscovery. This framework can be found in the cmbSDK bundle.

Starting from 2.3.0 you have to add CocoaAsyncSocket only if you are using NetworkDiscovery framework.

Using the Bluetooth Reader

Initializing the CMBReaderDevice for use with a Bluetooth reader like the DM8700 series is easy: simply create the reader device using the readerOfBluetoothPeripheral and pass a connected CBPeripheral object to it.

Swift

Objective-C

var connectedPeripheral: CBPeripheral = getConnectdPeripheral()
let readerDevice:CMBReaderDevice = CMBReaderDevice.reader(ofBluetoothPeripheral: connectedPeripheral, psm: CBL2CAPPSM(192))
readerDevice.delegate = self

CBPeripheral *connectedPeripheral: CBPeripheral = [self getConnectdPeripheral];
CMBReaderDevice *readerDevice = [CMBReaderDevice readerOfBluetoothPeripheral: connectedPeripheral psm:192];
readerDevice.delegate = self;

To get a CBPeripheral object connected to your Bluetooth reader please use CBCentralManager class' scanForPeripherals method passing the following serviceUUID: "53dc082b-902a-415d-a73d-a70ac8aaa332".

Please note that the connection process involves pairing that the user has to manually confirm.

Please note that if the pairing information is deleted from your Bluetooth reader (for example by a factory reset), you have to manually remove the Bluetooth reader from iOS Settings to let a new pairing process happen.

Using the Camera Reader

Barcode scanning with the built-in camera of the mobile device can be more complex than with an MX mobile terminal. Therefore the cmbSDK supports several configurations to provide the maximum flexibility,
including support of optional external aimers and illumination, as well as the ability to customize the appearance of the live-stream preview.

To scan barcodes using the built-in camera of the mobile device, initialize the CMBReaderDevice object using the readerOfDeviceCameraWithCameraMode static method. The camera reader has several options when
initialized. The following parameters are required:

* CDMCameraMode
* CDMPreviewOption
* UIView

The CameraMode parameter is of the type CDMCameraMode (defined in CDMDataManSystem.h), and it accepts one of the following values:

kCDMCameraModeNoAimer: If no aiming accessory is available, this mode initializes the live-stream preview on the screen to help positioning the barcode in the field of view for detection and decoding.
kCDMCameraModePassiveAimer: Initializes passive aimer use, which is an external accessory that uses the device's built-in LED flash for illumination to project an aiming pattern. In this mode no live-stream
preview is presented on the screen.
kCDMCameraModeFrontCamera: Initializes use of the front facing camera. In this mode, illumination is not available.

NOTE: Front-facing cameras do not have auto focus and illumination as a rule, and provide significantly lower resolution images. This option should be used with care.

The above modes provide the following default settings for the mobile device as a code reader:

The simulated hardware trigger is disabled.
When startScanning() is called, the decoding process is started. (Seek CDMPreviewOptionPaused for more details).

Based on the selected mode, the following additional options and behaviors are set:

7 / 22

kCDMCameraModeNoAimer (NoAimer)

The live-stream preview is displayed when the startScanning() method is called.
Illumination and control button are available and visible on the live-stream preview.
 Aimer control commands are ignored.

kCDMCameraModePassiveAimer (PassiveAimer)

The live-stream preview will not be displayed when the startScanning() method is called by default.
Illumination is not available
Illumination control commands are ignored.

kCDMCameraModeFrontCamera (FrontCamera)

The live-stream preview is displayed when the startScanning() method is called.
The front camera is used.
Illumination and the control button are not available.
Illumination or aimer control commands are ignored.

The previewOptions parameter (of type CDMPreviewOption, defined in CDMDataManSystem.h) is used to change the reader’s default values or override defaults derived from the selected CameraMode. Multiple options
can be specified by OR-ing them when passing the parameter. The available options are the following:

kCDMPreviewOptionDefaults: Accept all defaults set by the CameraMode.
kCDMPreviewOptionNoZoomBtn: Hide the zoom button on the live-stream preview.
kCDMPreviewOptionNoIllumBtn: Hide the illumination button on the live-stream preview.
kCDMPreviewOptionHwTrigger: Enable simulated hardware trigger (volume controls) for starting scanning. When pressed, scanning starts.
kCDMPreviewOptionPaused: Display the live-preview when the startScanning() method is called without starting the decoding (i.e. looking for barcodes). Pressing the on-screen scanning button starts the
decoding.
kCDMPreviewOptionAlwaysShow: Force display of live-preview when passive aiming mode has been selected (e.g. CameraMode == kCDMCameraModePassiveAimer)
kCDMPreviewOptionHighResolution: Use the device camera in higher resolution to help with scanning small barcodes, but slow decode time. The option sets resolution to 1920x1080 on devices that support it, and
the default one on devices that do not.The default resolution is 1280x720.
kCDMPreviewOptionHighFrameRate: Sets the camera to 60 FPS instead of the default 30 FPS to provide a smoother camera preview.
kCDMPreviewOptionKeepPreviewInPausedState: Keep the preview in paused state after read or timeout.

NOTE: The last parameter of type UIView is optional and is used as a container for the camera preview. If the parameter is left nil, a full screen preview will be used.

Examples:

Create a reader with no aimer and a full screen live-stream preview:

Swift
Objective-C

let readerDevice:CMBReaderDevice = CMBReaderDevice.readerOfDeviceCamera(with: CDMCameraMode.noAimer, previewOptions:CDMPreviewOption.init(rawValue: 0), previewView:nil)
readerDevice.delegate = self

CMBReaderDevice *readerDevice = [CMBReaderDevice readerOfDeviceCameraWithCameraMode:kCDMCameraModeNoAimer previewOptions:kCDMPreviewOptionDefaults previewView:nil];
readerDevice.delegate = self;

Create a reader with no aimer, no zoom button, and using a simulated trigger:

Swift
Objective-C

let readerDevice:CMBReaderDevice = CMBReaderDevice.readerOfDeviceCamera(with: CDMCameraMode.noAimer, previewOptions:[CDMPreviewOption.noZoomBtn, CDMPreviewOption.hwTrigger], previewView:nil)
readerDevice.delegate = self

CMBReaderDevice *readerDevice = [CMBReaderDevice readerOfDeviceCameraWithCameraMode:kCDMCameraModeNoAimer previewOptions:(kCDMPreviewOptionNoZoomBtn | kCDMPreviewOptionHwTrigger) previewView:
readerDevice.delegate = self;

Connecting to the Device

Initialize the CMBReaderDevice and set a delegate to handle responses from the reader.

Then connect using connectWithCompletion:

Swift
Objective-C

// Make sure the device is turned ON and ready
if self.readerDevice.availability == CMBReaderAvailibilityAvailable {
 // create the connection between the readerDevice object and device
 self.readerDevice.connect(completion: { (error:Error?) in
 if error != nil {
 // handle connection error
 }
 })
}

8 / 22

// Make sure the device is turned ON and ready
if (readerDevice.availability == CMBReaderAvailibilityAvailable) {
 // create the connection between the readerDevice object and device
 [readerDevice connectWithCompletion:^(NSError *error) {
 if (error) {
 // handle connection error
 }
 }];
}

When connected connectionStateDidChangeOfReader in the delegate is called, where you can check the connection status in your Reader Device's connectionState parameter. It should be
CMBConnectionStateConnected, which means that you have successfully made the connection to the CMBReaderDevice, and can begin using the Cognex Mobile Barcode SDK.

Configuring the Device

To change some settings after connecting to the device the cmbSDK provides a set of high-level, device independent APIs for setting and retrieving the current configuration of the device.

The differences between using an MX reader and the camera reader for scanning are detailed in the following sections.

Configuring MX Mobile Terminals

The MX family of mobile terminals provides sophisticated device configuration and management including saved configurations on the device. MX devices come Cognex preconfigured with most symbologies and features
ready to use.

If you would like a custom configuration, reconfigure through DataMan Setup Tool, or the Cognex Quick Setup. Both tools distribute saved configurations easily to multiple devices for simple configuration management.

The mobile application is able to configure the MX device giving you the option to:

have multiple scanning applications, each of which requiring a different set of device settings
create your own options in a “known” state, even though the device has been pre-configured correctly

Built-in Camera

The cmbSDK employs a default set of options for barcode reading with the built-in camera of the mobile device. However, there are two important differences to keep in mind:

The cmbSDK does not implement saved configurations for the built-in camera reader. Every time an application using the camera reader starts defaults ar used automatically.
The cmbSDK does not enable symbologies by default. The application programmer enables all barcode symbologies to scan in your application. The requisite for enabling only the needed symbologies explicitly, the
application achieves most optimal scanning performance on the mobile device.

Enabling Symbologies

Individual symbologies can be enabled using the following method of the CMBReaderDevice object:

-(void) setSymbology:(CMBSymbology)symbology
enabled:(bool)enabled
completion:(void (^)(NSError *error))completionBlock;

All symbologies used for the symbology parameter in this method can be found in CMBReaderDevice.h.

Examples

Swift
Objective-C

self.readerDevice.setSymbology(CMBSymbologyQR, enabled: true, completion: {(_ error: Error?) -> Void in
 if error != nil {
 // Failed to enable that symbology, Possible causes are: reader disconnected, out of battery or cable unplugged, or symbology not supported by the current readerDevice
 }
})

[readerDevice setSymbology:CMBSymbologyQR enabled:YES completion:^(NSError *error){
 if (error) {
 // Failed to enable that symbology, Possible causes are: reader disconnected, out of battery or cable unplugged, or symbology not supported by the current readerDevice
 }
}];

The same method can also be used to turn symbologies off:

Swift
Objective-C

self.readerDevice.setSymbology(CMBSymbologyUpcEan, enabled: false, completion: {(_ error: Error?) -> Void in
 if error != nil {
 // Failed to enable that symbology, Possible causes are: reader disconnected, out of battery or cable unplugged, or symbology not supported by the current readerDevice
 }
})

[readerDevice setSymbology:CMBSymbologyUpcEan enabled:NO completion:^(NSError *error){
 if (error) {
 // Failed to enable that symbology, Possible causes are: reader disconnected, out of battery or cable unplugged, or symbology not supported by the current readerDevice
 }
}];

9 / 22

Illumination Control

If your reader device is equipped with illumination (e.g. LEDs), you can control whether they are ON or OFF when scanning starts using the following method of your CMBReaderDevice object:

Swift
Objective-C

self.readerDevice.setLightsON(true) { (error:Error?) in
 if error != nil {
 // Failed to enable illumination, Possible causes are: reader disconnected, out of battery or cable unplugged, or device doesn't come with illumination lights
 }
}

[readerDevice setLightsON:YES completion:^(NSError *error) {
 if (error) {
 // Failed to enable illumination, Possible causes are: reader disconnected, out of battery or cable unplugged, or device doesn't come with illumination lights
 }
}];

Keep in mind that not all devices and device modes supported by the cmbSDK allow illumination control. For example, if using the built-in camera in passive aimer mode, illumination is not available since the LED is being
used for aiming.

Camera Zoom Settings

If built-in camera is used as reader device you have the possibility to configure zoom levels and define the way these zoom levels are used.

There are 3 zoom levels for the phone camera, which are:

normal: not zoomed (100%)
level 1 zoom (default 200%)
level 2 zoom (default 400%)

You can define these zoom levels with "SET CAMERA.ZOOM-PERCENT [100-MAX] [100-MAX]" command. It configures how far the two levels will zoom in percentage. 100 is without zoom, and MAX (goes up to 1000)
will zoom as far as the device is capable of. First argument is used for setting level 1 zoom, and the second for level 2 zoom.

When you want to check current setting, you can do this with the "GET CAMERA.ZOOM-PERCENT" that returns two values: level 1 and level 2 zoom.

Example

Swift
Objective-C

readerDevice.dataManSystem()?.sendCommand("SET CAMERA.ZOOM-PERCENT 250 500")

[readerDevice.dataManSystem sendCommand:@"SET CAMERA.ZOOM-PERCENT 250 500"];

Note: Camera needs to be started within SDK at least once to have a valid maximum zoom level. It means that if you set the zoom level to 1000 and the device can go up to 600 only, "GET CAMERA.ZOOM-
PERCENT" command returns 1000 as long as camera is not opened (e.g. with [readerDevice startScanning];), but it returns 600 afterwards.

here is another command that sets which zoom level you want to use or returns the actual setting: "GET/SET CAMERA.ZOOM 0-2".

Possible values for the SET command are:

0 - normal (un-zoomed)
1 - zoom at level 1
2 - zoom at level 2

You can call this command before scanning or even during scanning, the zoom goes up to the level that was configured.

When the scanning is finished, the values are reset to normal(0).

Example

Swift
Objective-C

readerDevice.dataManSystem()?.sendCommand("SET CAMERA.ZOOM 2")

[readerDevice.dataManSystem sendCommand:@"SET CAMERA.ZOOM 2"];

Camera Overlay Customization

When using the built-in camrea of the mobile device, the cmbSDK allows you to see the Camera Preview inside a preview container or in full screen. This preview also contains an overlay, which can be customized. The
cmbSDK camera overlay is built from buttons for zoom, flash, closing the scanner (in full screen), a progress bar indicating the scan timeout, and lines on the corners of the camera preview. There are two available
overlays: legacy and CMB overlay.

10 / 22

To use the legacy camera overlay, which was used in the cmbSDK v2.0.x and the ManateeWorks SDK, use this property from MWOverlay before initializing the CMBReaderDevice:

NOTE: The legacy overlay has limited customization options, so it is preferred to use the CMB overlay.

Swift
Objective-C

MWOverlay.setOverlayMode(Int32(OM_LEGACY.rawValue))

[MWOverlay setOverlayMode:OM_LEGACY];

If using the CMB overlay, you can find the layout files in the Resources/layout directory:

CMBScannerPartialView.xib used when the scanner is started inside a container (partial view)

CMBScannerView.xib when the scanner is started in full screen

Copy the layout file that you need, or both layouts, then modify them as you like. Change the size, position or color of the views, remove views, and add your own views, like an overlay image. The views that are used by
the cmbSDK (zoom, flash, close buttons, the view used for drawing lines on the corners, and the progress bar) are accessed by the sdk using the Tag attribute, make sure the Tag attribute remains unchanged, so that the
cmbSDK is able to recognize the views and continue to function correctly.

Both the CMB and the legacy overlay allow you to change the images used on the zoom and flash buttons. To do that, first copy the assets folder MWBScannerImages.xcassets from the Resources dir into your project.
In XCode you can look at the images contained in this assets folder, and replace them with your own while keeping the image names unchanged.

Both the CMB and the LEGACY overlay allow you to change the color and width of the rectangle that is displayed when a barcode is detected. Here's an example on how to do that:

Swift
Objective-C

MWOverlay.setLocationLineUIColor(UIColor.yellow)
MWOverlay.setLocationLineWidth(5)

[MWOverlay setLocationLineUIColor:UIColor.yellowColor];
[MWOverlay setLocationLineWidth:5];

Advanced Configuration

Every Cognex scanning device implements DataMan Control Commands (DMCC), a method for configuring and controlling the device. Virtually every feature of the device can be controlled using this text based language.
The API provides a method for sending DMCC commands to the device. Commands exist both for setting and querying configuration properties.

Appendix A includes the complete DMCC reference for use with the camera reader. DMCC commands for other supported devices (e.g. the MX-1000) are included with the documentation of that particular device.
Appendix B provides the default values for the camera reader’s configuration settings as related to the corresponding DMCC setting.
The following examples show different DMCC commands being sent to the device for more advanced configuration.

Example:

Change the scan direction to omnidirectional:

Swift
Objective-C

self.readerDevice.dataManSystem()?.sendCommand("SET DECODER.1D-SYMBOLORIENTATION 0", withCallback: { (response:CDMResponse?) in
 if response?.status == DMCC_STATUS_NO_ERROR {
 // Command was executed successfully
 } else {
 // Command failed, handle errors here
 }
})

[readerDevice.dataManSystem sendCommand:@"SET DECODER.1D-SYMBOLORIENTATION 0" withCallback:^(CDMResponse *response){
 if (response.status == DMCC_STATUS_NO_ERROR) {
 // Command was executed successfully
 } else {
 // Command failed, handle errors here
 }
}];

Change the scanning timeout of the live-stream preview to 10 seconds:

Swift
Objective-C

self.readerDevice.dataManSystem()?.sendCommand("SET DECODER.MAX-SCAN-TIMEOUT 10", withCallback: { (response:CDMResponse?) in
 if response?.status == DMCC_STATUS_NO_ERROR {
 // Command was executed successfully
 } else {
 // Command failed, handle errors here
 }
})

11 / 22

[readerDevice.dataManSystem sendCommand:@"SET DECODER.MAX-SCAN-TIMEOUT 10" withCallback:^(CDMResponse *response){
 if (response.status == DMCC_STATUS_NO_ERROR) {
 // Command was executed successfully
 } else {
 // Command failed, handle errors here
 }
}];

Get the type of the connected device:

Swift
Objective-C

self.readerDevice.dataManSystem()?.sendCommand("GET DEVICE.TYPE", withCallback: { (response:CDMResponse?) in
 if response?.status == DMCC_STATUS_NO_ERROR {
 // Command was executed successfully
 let deviceType:String = response?.payload
 } else {
 // Command failed, handle errors here
 }
})

[readerDevice.dataManSystem sendCommand:@"GET DEVICE.TYPE" withCallback:^(CDMResponse *response){
 if (response.status == DMCC_STATUS_NO_ERROR) {
 // Command was executed successfully
 NSString *deviceType = response.payload;
 } else {
 // Command failed, handle errors here
 }
}];

Resetting the Configuration

NOTE: This section only contains instruction to reset cmbSDK defaults. For information on resetting to factory defaults please refer to the manual of the reader device.

The cmbSDK includes a method for resetting the device to its default settings. In the case of an MX mobile terminal, this is the configuration saved by default, while in the case of the built-in camera, these are the defaults
identified in Appendix B, where no symbologies will be enabled. This method is the following:

Swift
Objective-C

self.readerDevice.resetConfig { (error:Error?) in
 if error != nil {
 // Failed to reset configuration, Possible causes are: reader disconnected, out of battery or cable unplugged
 }
}

[readerDevice resetConfigWithCompletion:^(NSError *error) {
 if (error) {
 // Failed to reset configuration, Possible causes are: reader disconnected, out of battery or cable unplugged
 }
}];

Scanning Barcodes

With a properly configured reader, you are ready to scan barcodes. This is simply accomplished by calling the startScanning() method from your CMBReaderDevice object. What happens next is based on the type of
CMBReaderDevice and how it has been configured. Generally:

If using an MX terminal, press a trigger button on the device to turn the scanner on and read a barcode.
If using the camera reader, the cmbSDK starts the camera, displays the configured live-stream preview, and begins analyzing the frames from the video stream, looking for a configured barcode symbology.

Scanning stops under one of the following conditions:

The reader found and decoded a barcode.
The user released the trigger or pressed the stop button on the live-stream preview screen.
The camera reader timed out without finding a barcode.
The application program calls the stopScanning() method.

When a barcode is decoded successfully, you will receive a CMBReadResults array in your CMBReaderDevice's delegate using the following CMBReaderDeviceDelegate method:

Swift
Objective-C

func didReceiveReadResult(fromReader reader: CMBReaderDevice, results readResults: CMBReadResults!)

- (void)didReceiveReadResultFromReader:(CMBReaderDevice *)reader results:(CMBReadResults *)readResults;

 To simply display a ReadResult after scanning a barcode:

12 / 22

Swift
Objective-C

func didReceiveReadResult(fromReader reader: CMBReaderDevice, results readResults: CMBReadResults!) {
 if readResults.readResults.count > 0 {
 let readResult:CMBReadResult = readResults.readResults?.first as! CMBReadResult
 if readResult.image != nil {
 self.ivPreview.image = readResult.image
 }
 if readResult.readString != nil {
 self.lblCode.text = readResult.readString
 }
 }
}

- (void)didReceiveReadResultFromReader:(CMBReaderDevice *)reader results:(CMBReadResults *)readResults {
 if (readResults.readResults.count > 0) {
 CMBReadResult *readResult = readResults.readResults.firstObject;
 if (readResult.image) {
 self.ivPreview.image = readResult.image;
 }
 if (readResult.readString) {
 self.lblCode.text = readResult.readString;
 }
 }
}

In the example above, ivPreview is an UIImageView used to display an image of the barcode that was scanned, and lblCode is a UILabel used to show the result from the barcode. You can also use the BOOL from
readResult.goodRead to check whether the scan was successful or not.

Working with Results

When a barcode is successfully read, a CMBReadResult object is created and returned by the didReceiveReadResultFromReader:results: method. In case of having multiple barcodes successfully read on a single
image/frame, multiple CMBReadResult objects are returned. This is why the CMBReadResults class has an array of CMBReadResult objects containing all results.

The CMBReadResult class has properties describing the result of a barcode read:

goodRead (BOOL): tells whether the read was successful or not
readString (NSString): the decoded barcode as a string
image (UIImage): the image/frame that the decoder has processed
imageGraphics (NSData): the boundary path of the barcodeas SVG data
XML (NSData): the raw XML that the decoder returned
symbology (CMBSymbology): the symbology type of the barcode. This enum is defined in CMBReaderDevice.h.

When a scanning ends with no successful read, a CMBReadResult is returned with the goodRead property set to false. This usually happens when scanning is canceled or timed out.

To enable the image and imageGraphics properties being filled in the CMBReadResult object, you have to set the corresponding imageResultEnabled and/or SVGResultEnabled properties of the CMBReaderDevice
object.

To see an example on how the image and SVG graphics are used and displayed in parallel, refer to the sample applications provided in the SDK package.

To access the raw bytes from the scanned barcode, you can use the XML property. The bytes are stored as a Base64 String under the "full_string" tag. Here's an example how you can use the iOS XML parser to extract
the raw bytes from the XML property.

Example:

Parsing the XML and extracting the Base64 String is done using the XMLParserDelegate delegate. Add this delegate and the following methods from it in your ViewController:

Swift
Objective-C

// XMLParserDelegate
var currentElement = ""
var base64String = ""
func parser(_ parser: XMLParser, didStartElement elementName: String, namespaceURI: String?, qualifiedName qName: String?, attributes attributeDict: [String : String] = [:]) {
 currentElement = elementName
}

func parser(_ parser: XMLParser, foundCharacters string: String) {
 if currentElement == "full_string" {
 base64String = string
 }
}

#pragma NSXMLParserDelegate
NSString *currentElement;
NSString *base64String;
- (void)parser:(NSXMLParser *)parser didStartElement:(NSString *)elementName namespaceURI:(NSString *)namespaceURI qualifiedName:(NSString *)qName attributes:(NSDictionary<NSString *,NSString
 currentElement = elementName;
}

- (void)parser:(NSXMLParser *)parser foundCharacters:(NSString *)string {
 if ([currentElement isEqualToString:@"full_string"]) {
 base64String = string;
 }
}

After you have set the XMLParserDelegate to extract the base64 string from the XML result, you need to create a XMLParser object and parse the result.xml using this delegate. This can be done when receiving the scan
result in the CMBReaderDeviceDelegate, or when accessing a CMBReadResult object. Here's how you can get the raw bytes using the delegate that you created earlier:

Swift
Objective-C

13 / 22

let xmlParser:XMLParser = XMLParser.init(data: result.xml)
xmlParser.delegate = self
if xmlParser.parse() {
 // Access the raw bytes via this variable
 let bytes:Data? = Data.init(base64Encoded: base64String)
}

NSXMLParser *xmlParser = [NSXMLParser.alloc initWithData:result.XML];
xmlParser.delegate = self;
if ([xmlParser parse]) {
 // Access the raw bytes via this variable
 NSData *bytes = [NSData.alloc initWithBase64EncodedString:base64String options:0];
}

Image Results

By default, the image and SVG results are disabled, which means that when scanning, the CMBReadResults will not contain any data in the corresponding properties.

Not all supported devices provide SVG graphics.

To enable image results, set the imageResultEnabled property from the CMBReaderDevice class by using the following method:

Swift
Objective-C

self.readerDevice.imageResultEnabled = true

[readerDevice setImageResultEnabled:YES];

To enable SVG results, set the imageResultEnabled property from the CMBReaderDevice class by using the following method:

Swift
Objective-C

self.readerDevice.svgResultEnabled = true

[readerDevice setSVGResultEnabled:YES];

Handling Disconnection

1. Disconnection:

There may be cases when a device disconnects due to low battery condition or manual cable disconnection. These cases can be detected by the connectionStateDidChangeOfReader callback of the
CMBReaderDeviceDelegate.

Note: The availabilityDidChangeOfReader method is also called when the device becomes physically unavailable. It means that the (re)connection is not possible. Always check the availability property of the
CMBReaderDevice object before trying to call the connectWithCompletion method.

2. Re-Connection:

After returning to your application from inactive state, the reader device remains initialized but not connected. There is no need for reinitializing the SDK but you need to re-connect.

Some iOS versions will send an "Availability" notification when resuming the application that the external accessory is available. You can use this in the CMBReaderDeviceDelegate method:
(void)availabilityDidChangeOfReader:(CMBReaderDevice *)reader so when the reader becomes available, you can connect.

For example:

Swift
Objective-C

func availabilityDidChange(ofReader reader: CMBReaderDevice) {
 if (reader.availability == CMBReaderAvailibilityAvailable) {
 readerDevice.connect(completion: { error in
 if error != nil {
 // handle connection error
 }
 })
 }
}

14 / 22

- (void)availabilityDidChangeOfReader:(CMBReaderDevice *)reader {
 if (readerDevice.availability == CMBReaderAvailibilityAvailable) {
 [readerDevice connectWithCompletion:^(NSError *error) {
 if (error) {
 // handle connection error
 }
 }];
 }
}

Some iOS versions do not report availability change on resume, so you need to handle this manually. Add an observer for UIApplicationDidBecomeActiveNotification and connect.

NOTE: Make sure that the reader is not already in "connecting" or "connected" state.

Example:

Swift
Objective-C

override func viewDidLoad() {
 super.viewDidLoad()
 // Reconnect when app resumes
 NotificationCenter.default.addObserver(self, selector: #selector(self.appBecameActive), name:NSNotification.Name.UIApplicationDidBecomeActive, object: nil)
}

// handle app resume
func appBecameActive() {
 if readerDevice != nil
 && readerDevice.availability == CMBReaderAvailibilityAvailable
 && readerDevice.connectionState != CMBConnectionStateConnecting && readerDevice.connectionState != CMBConnectionStateConnected {
 readerDevice.connect(completion: { error in
 if error != nil {
 // handle connection error
 }
 })
 }
}

- (void)viewDidLoad {
 // Reconnect when app resumes
 [[NSNotificationCenter defaultCenter] addObserver:self
 selector:@selector(appBecameActive)
 name:UIApplicationDidBecomeActiveNotification object:nil];
}

// handle app resume
-(void) appBecameActive {
 if (readerDevice != nil
 && readerDevice.availability == CMBReaderAvailibilityAvailable
 && readerDevice.connectionState != CMBConnectionStateConnecting && readerDevice.connectionState != CMBConnectionStateConnected) {
 [readerDevice connectWithCompletion:^(NSError *error) {
 if (error) {
 // handle connection error
 }
 }];
 }
}

Using the MX Reader copy #2402

Initializing the CMBReaderDevice for use with an MX mobile terminal like the MX-1000, MX-1100, or MX-1502 is easy: simply create the reader device using the MX device method (it requires no parameters), and set the
appropriate delegate (normally self):

Swift
Objective-C

let readerDevice:CMBReaderDevice = CMBReaderDevice.readerOfMX()
readerDevice.delegate = self

CMBReaderDevice *readerDevice = [CMBReaderDevice readerOfMXDevice];
readerDevice.delegate = self;

The availability of the MX mobile terminal can change when the device turns ON or OFF, or if the lightning cable gets connected or disconnected. You can handle those changes using the following
CMBReaderDeviceDelegate method.

Swift
Objective-C

func availabilityDidChange(ofReader reader: CMBReaderDevice)

- (void)availabilityDidChangeOfReader:(CMBReaderDevice *)reader

Using other Cognex network device

15 / 22

If you want to connect to a Cognex device on the network (e.g handheld or fixed mount) you have to use another framework named as NetworkDiscovery. This framework can be found in the cmbSDK bundle.

Starting from 2.3.0 you have to add CocoaAsyncSocket only if you are using NetworkDiscovery framework.

Using the MX Reader copy #2402

Initializing the CMBReaderDevice for use with an MX mobile terminal like the MX-1000, MX-1100, or MX-1502 is easy: simply create the reader device using the MX device method (it requires no parameters), and set the
appropriate delegate (normally self):

Swift
Objective-C

let readerDevice:CMBReaderDevice = CMBReaderDevice.readerOfMX()
readerDevice.delegate = self

CMBReaderDevice *readerDevice = [CMBReaderDevice readerOfMXDevice];
readerDevice.delegate = self;

The availability of the MX mobile terminal can change when the device turns ON or OFF, or if the lightning cable gets connected or disconnected. You can handle those changes using the following
CMBReaderDeviceDelegate method.

Swift
Objective-C

func availabilityDidChange(ofReader reader: CMBReaderDevice)

- (void)availabilityDidChangeOfReader:(CMBReaderDevice *)reader

Using other Cognex network device

If you want to connect to a Cognex device on the network (e.g handheld or fixed mount) you have to use another framework named as NetworkDiscovery. This framework can be found in the cmbSDK bundle.

Starting from 2.3.0 you have to add CocoaAsyncSocket only if you are using NetworkDiscovery framework.

Appendix A - DMCC for the Camera Reader

Appendix A - DMCC for the Camera Reader

The following table lists the various DMCC commands supported by the cmbSDK when using the built-in camera for barcode scanning.

Note: Many of the cmbSDK commands are also supported on the MX mobile terminals. Commands that are supported by the MX Terminal are indicated with an x in the last column.

GET/SET COMMAND PARAMETER(S) DESCRIPTION DEFAULT VALUE
DEV
RE
ON

GET BATTERY.CHARGE [0-100] Displays current battery level in percentage. N/A

 BEEP

repetition
[0-3]
level
[0-2]

Plays the audible beep (tone). N/A

GET/SET BEEP.GOOD

number of beeps
[0-3]

beep tone
[0-2]

Sets the number of beeps and the beep tone/pitch: low, medium, high.
For the built-in camera, only a single beep with no pitch control is supported.

0 1 turns the beep off, 1 1 turns the beep on.
1 1 Turn beep on

GET/SET CAMERA.ZOOM 0-2

Values for the SET command are:
0 - normal (no zoom)
1 - zoom at level 1,
2 - zoom at level 2.

The zoom level is used during scanning. When scanning ends zoom level resets to 0.

N/A

GET/SET CAMERA.ZOOM-
PERCENT

Level 1
[100-MAX]

Level 2
[100-MAX]

Gets or sets the percentage of camera zoom:
level 1: default 200%
level 2 :default 400%

Note: Make sure to start the camera at least once from the SDK to have a proper value
for max capable zoom (MAX).

N/A

16 / 22

GET/SET COMMAND PARAMETER(S) DESCRIPTION DEFAULT VALUE
DEV
RE
ON

GET/SET CODABAR.CODESIZE
any
min
max

[ON | OFF] Accepts any length Codabar.

[1-max] Sets min length of accepted Codabar

[min-80] Sets max length of accepted Codabar

N/A

GET/SET CODABAR.QZ-SIZE 0-100 Quiet zone single strictness size. 50

GET/SET CODABAR.VERIFICATION [ON|OFF] Turns verification for Codabar barcodes on/off. ON

GET/SET C11.CHKCHAR [ON | OFF] Turns Code 11 check on/off. OFF

GET/SET C11.CHKCHAR-OPTION [0-1] 0: disable Requires single checksum.
1: enable Requires double checksum. 1

GET/SET C11.CODESIZE
any
min
max

[ON|OFF] Accepts any length Code 11.
[1-max] Sets min length of accepted Code 11.

[min-80] Sets max length of accepted Code 11.

N/A

GET/SET C11.QZ-SIZE 0-100 Quiet zone single strictness size. 50

GET/SET C11.VERIFICATION [ON|OFF] Turns verification for Code 11 barcodes on/off. ON

GET/SET C128.QZ-SIZE 0-100 Quiet zone single strictness size. 50

GET/SET C128.VERIFICATION [ON|OFF] Turns verification for Code 11 barcodes on/off. ON

GET/SET C25.CODESIZE

any
min
max

Code 25 Code Size. For the cmbSDK, all of the Code 25 variants use the same minimum
length; thus it will accept either C25.CODESIZE or I205.CODESIZE.

[ON|OFF] Accepts any length Code 25.
[4-max] (or [1-max] in case of Cognex devices) Sets min length of accepted Code 25.

[min-50] (or [min-80] in case of Cognex devices) Sets max length of accepted Code 25.

N/A

GET/SET C25.QZ-SIZE 0-100 Quiet zone single strictness size. Note that C25.QZ-SIZE and I2O5.QZ-SIZE are the same
setting for the camera API. 50

GET/SET C25.VERIFICATION ON | OFF Turns verification for Code 25 and Interleaved 2 of 5 barcodes on/off. ON

GET/SET C39.ASCII [ON|OFF] Turns Code 39 extended ASCII on/off. OFF

GET/SET C39.CODESIZE

any
min
max

[ON|OFF] Accepts any length Code 39.
[2|4-max] Sets min length of accepted Code 39. (2 is the minimum for using camera API, 4 is

used for MX mobile terminals)

[min-50|80] Sets max length of accepted Code 39. (50 is the maximum for using camera API,
80 is used for MX mobile terminals)

Setting codesize to 2-3 is risky as it may result misreadings.

N/A

GET/SET C39.CHKCHAR

[ON|OFF]
Code 39 Check Character. OFF

GET/SET C39.QZ-SIZE 0-100 Quiet zone single strictness size. 50

GET/SET C39.VERIFICATION [ON|OFF] Turns verification for Code 39 barcodes on/off. ON

GET/SET C93.ASCII

[ON|OFF]

Turns Code 93 extended ASCII on/off OFF

GET/SET C93.CODESIZE
any
min
max

[ON|OFF] Accepts any length Code 93.
[1-max] Sets min length of accepted Code 93.

[min-80] Sets max length of accepted Code 93.

N/A

GET/SET C93.VERIFICATION [ON|OFF] Turns verification for Code 93 barcodes on/off. OFF

 CONFIG.DEFAULT
Resets most of the camera API settings to default. Device identification and communications

settings are not changed.To reset all settings, use DEVICE.DEFAULT.

N/A

17 / 22

GET/SET COMMAND PARAMETER(S) DESCRIPTION DEFAULT VALUE
DEV
RE
ON

 CONFIG.SAVE
Saves the current configuration to non-volatile memory (MX-1xxx only). Note that when an

MX powers off or enters sleep mode, the last saved configuration is restored when the device
wakes up.

N/A

 CONFIG.RESTORE Restores the saved configuration from non-volatile memory (MX-1xxx only). N/A

GET/SET DATA.RESULT-TYPE

0
1
2
4
8

Specifies results to be returned (sum of multiple values): None
Text string result (default)

XML results
XML stats

Scan image (see IMAGE.* commands)

1

GET/SET DATABAR.EXPANDED [ON|OFF] Turns the DataBar Expanded symbology on/off. OFF

GET/SET DATABAR.LIMITED [ON|OFF] Turns the DataBar Limited symbology on/off. ON

GET/SET
DATABAR.GROUP
DATABAR.RSS14

[ON|OFF] Turns the DataBar GROUP (before cmbSDK 2.4.2 known as RSS14) symbology on/off. OFF

GET/SET DATABAR.RSS14STACK [ON|OFF] Turns the DataBar RSS14 Stacked symbology on/off. It is deprecated from cmbSDK 2.4.2,
use DATABAR.GROUP instead. OFF

GET/SET DATABAR.VERIFICATION [ON|OFF] Turns verification for Databar barcodes on/off. ON

GET/SET DECODER.1D-
SYMBOLORIENTATION

0
1
2
3

Use omnidirectional scan orientation.
Use horizontal and vertical scan orientation.

Use vertical scan orientation.
Use horizontal scan orientation.

1

GET/SET DECODER.CENTERING-
WINDOW

[0-100]
[0-100]
[0-100]
[0-100]

Location and size of centering window as a percentage of the sensor size.
Center horizontally as percentage of centering window

Center vertically as percentage of centering window
Size horizontally as percentage of centering window

Size vertically as percentage of centering window

GET/SET DECODER.DISPLAY-
TARGET [ON|OFF] Displays centering window graphics. OFF

GET/SET DECODER.EFFORT [1-5]

Sets the effort level for image analysis/decoding.

NOTE: Do not use 4-5 for online scanning.
2

GET/SET DECODER.MAX-SCAN-
TIMEOUT [0-120] Sets the timeout for the live-stream preview. When the timeout is reached, decoding is

paused, and the live-stream preview will remain on-screen. 60

GET DECODER.MAX-
THREADS Returns the max number of CPU threads supported by the device. N/A

GET/SET DECODER.REREAD-TIME [0-10000] Code re-reading delay in milliseconds. 1000

GET/SET DECODER.ROI-PERCENT

[0-100]
[0-100]
[0-100]
[0-100]

Location and size of region of interest as a percentage of the camera view size:
Center horizontally as percentage of ROI
Size horizontally as percentage of ROI
Center vertically as percetage of ROI
Size vertically as percentage of ROI

N/A

GET/SET DECODER.TARGET-
DECODING [ON|OFF] Enable target decoding, to read codes that has overlap with the target decoding window. OFF

GET/SET DECODER.THREADS-
USED [1-MAX] Specify the max number of CPU threads that the scanner can use during the scanning

process.

max number of CPU
threads supported by the

device

GET/SET DECODER.USE-
CENTERING [ON|OFF] Only reads codes within the centering window. OFF

 DEVICE.DEFAULT Resets the camera API settings to default.

GET DEVICE.FIRMWARE-
VER Gets the device firmware version. N/A

GET DEVICE.ID string
Returns device ID assigned by Cognex to the scanning device.

For a built-in camera, SDK returns 53.
N/A

18 / 22

GET/SET COMMAND PARAMETER(S) DESCRIPTION DEFAULT VALUE
DEV
RE
ON

GET/SET DEVICE.NAME Returns the name assigned to the device.
MX-the last 6 digits of

DEVICE.SERIAL-
NUMBER.

GET DEVICE.SERIAL-
NUMBER

Returns the serial number of the device.
For a built-in camera, the SDK assigns a pseudo-random number.

N/A

GET DEVICE.TYPE
Returns the device name assigned by Cognex to the scanning device.

For a built-in camera, SDK returns “MX-Mobile”.
N/A

GET/SET FOCUS.FOCUSTIME [0-10] Sets the camera’s auto-focus period (how often the camera should attempt to refocus). 3

GET/SET I2O5.CHKCHAR [ON|OFF] Turns Interleaved 2 of 5 check digit on/off. OFF

GET/SET I2O5.CODESIZE

any
min
max

For the cmbSDK, all of the Code 25 variants use the same minimum length; thus it will
accept either C25.CODESIZE or I205.CODESIZE.
[ON|OFF] Accepts any length Interleaved 2 of 5.

[1-max] Sets min length of accepted Interleaved 2 of 5.

[min-80] Sets max length of accepted Interleaved 2 of 5.

N/A

GET/SET I2O5.QZ-SIZE 0-100 Quiet zone single strictness size. Note that C25.QZ-SIZE and I2O5.QZ-SIZE are the same
setting for the camera API. 50

GET/SET I2O5.VERIFICATION [ON|OFF] Turns verification for Interleaved 2 of 5 and Code 25 barcodes on/off. ON

GET/SET IMAGE.FORMAT
0
1
2

Scanner returns image result in bitmap format.
Scanner returns image result in JPEG format.
Scanner returns image result in PNG format.

1

GET/SET IMAGE.QUALITY [10, 15, 20, ...90] Specifies JPEG image quality. 50

GET/SET IMAGE.SIZE

0
1
2
3

Scanner returns full size image.
Scanner returns 1⁄4 size image.

Scanner returns 1/16 size image.
Scanner returns 1/64 size image.

1

GET/SET LIGHT.AIMER [0-1]

Disables/enables the aimer when the scanner starts.
Default based on cameraMode:
0: NoAimer and FrontCamera

1: PassiveAimer

ON

GET/SET LIGHT.AIMER-TIMEOUT [0-600]
Timeout in seconds for an aimer.

This value is always overridden by DECODER.MAX-SCAN- TIMEOUT.
60

GET/SET LIGHT.INTERNAL-
ENABLE [ON|OFF] Enables/disables illumination. OFF

GET/SET MSI.CHKCHAR [ON | OFF]
Turns MSI Plessey check digit on/off.

Default value is OFF.
N/A

GET/SET MSI.CHKCHAR-OPTION

0
1
2
3
4
5

Use mod 10 checksum
Use mod 11 checksum (IBM algorithm)

Use mod 10 mod 10 checksum
Use mod 11 mod 10 checksum (IBM algorithm)

Use mod 11 checksum (NCR algorithm)
Use mod 11 mod 10 checksum (NCR algorithm)

N/A

GET/SET MSI.CODESIZE
mode
min
max

[ON|OFF] Accepts any length MSI Plessey.

[1-max] Sets min/max length of accepted MSI Plessey.
[min-80] Sets min/max length of accepted MSI Plessey.

N/A

GET/SET MSI.QZ-SIZE 0-100 Quiet zone single strictness size. 50

GET/SET MSI.VERIFICATION [ON | OFF] Turns verification for MSI barcodes on/off. ON

GET/SET QR.MICRO [ON | OFF] Turns the QR Micro symbology on/off OFF

GET/SET SYMBOL.AZTECCODE [ON | OFF] Turns the Aztec Code symbology on/off. OFF

GET/SET SYMBOL.CODABAR [ON | OFF] Turns the Codabar symbology on/off. OFF

19 / 22

GET/SET COMMAND PARAMETER(S) DESCRIPTION DEFAULT VALUE
DEV
RE
ON

GET/SET SYMBOL.C11 [ON | OFF] Turns the Code 11 symbology on/off. OFF

GET/SET SYMBOL.C128 [ON | OFF] Turns the Code 128 symbology on/off. OFF

GET/SET SYMBOL.C25 [ON | OFF] Turns the Code 25 symbology on/off (standard). OFF

GET/SET SYMBOL.C39 [ON | OFF] Turns the Code 39 symbology on/off. OFF

GET/SET SYMBOL.C39-CONVERT-
TO-C32 [ON | OFF] Enables/disables the conversion of Code39 to Code32. OFF

GET/SET SYMBOL.C93 [ON | OFF] Turns the Code 93 symbology on/off. OFF

GET/SET SYMBOL.COOP [ON | OFF] Turns the COOP symbology (Code 25 variant) on/off. OFF

GET/SET SYMBOL.DATAMATRIX [ON | OFF] Turns the Data Matrix symbology on/off. OFF

GET/SET SYMBOL.DATABAR [ON | OFF] Turns the DataBar symbologies on/off. Check also DATABAR.GROUP, DATABAR.LIMITED,
DATABAR.EXPANDED to check which subtypes are read if Databar is turned on. OFF

GET/SET SYMBOL.DOTCODE [ON | OFF] Turns the DotCode symbology on/off. OFF

GET/SET SYMBOL.IATA [ON | OFF] Turns the IATA symbology (Code 25 variant) on/off. OFF

GET/SET SYMBOL.INVERTED [ON | OFF] Turns the Inverted symbology (Code 25 variant) on/off. OFF

GET/SET SYMBOL.ITF14 [ON | OFF] Turns the ITF-14 symbology (Code 25 variant) on/off. OFF

GET/SET SYMBOL.UPC-EAN [ON | OFF] Turns the UPC-A, UPC-E, EAN-8, and EAN-13 symbologies on/off. OFF

GET/SET SYMBOL.MATRIX [ON | OFF] Turns the Matrix symbology (Code 25 variant) on/off. OFF

GET/SET SYMBOL.MAXICODE [ON | OFF] Turns the MaxiCode symbology on/off. OFF

GET/SET SYMBOL.MSI [ON | OFF] Turns the MSI Plessey symbology on/off. OFF

GET/SET SYMBOL.PDF417 [ON | OFF] Turns the PDF417 symbology on/off. OFF

GET/SET SYMBOL.PLANET [ON | OFF] Turns the PLANET symbology on/off. OFF

GET/SET SYMBOL.POSTNET [ON | OFF] Turns the POSTNET symbology on/off. OFF

GET/SET SYMBOL.TELEPEN [ON | OFF] Turns the TELEPEN symbology on/off. OFF

GET/SET SYMBOL.4STATE-AUS [ON | OFF] Turns the Australian Mail symbology on/off. OFF

GET/SET SYMBOL.4STATE-IMB [ON | OFF] Turns the Intelligent Mail Barcode symbology on/off. OFF

GET/SET SYMBOL.4STATE-RMC [ON | OFF] Turns the Royal Mail Code symbology on/off. OFF

GET/SET SYMBOL.QR [ON | OFF] Turns the QR and MicroQR symbologies on/off. OFF

GET/SET TELEPEN.FORCE-
NUMERIC [ON | OFF] Turns reading of only numeric Telepen symbology on/off. OFF

GET/SET TELEPEN.VERIFICATION [ON | OFF] Turns verification for Telepen barcodes on/off. OFF

20 / 22

GET/SET COMMAND PARAMETER(S) DESCRIPTION DEFAULT VALUE
DEV
RE
ON

GET/SET TRIGGER.TYPE

0
1
2
3
4
5

Not supported
Not supported

Manual (default)
Not supported
Not supported
Continuous

N/A

GET/SET UPC-EAN.EAN13 [ON | OFF] Turns the EAN-13 symbology on/off. ON

GET/SET UPC-EAN.EAN8 [ON | OFF] Turns the EAN-8 symbology on/off. ON

GET/SET UPC-EAN.UPC-A [ON | OFF] Turns the UPC-A symbology on/off. ON

GET/SET UPC-EAN.UPC-E [ON | OFF] Turns the UPC-E symbology on/off. ON

GET/SET UPC-EAN.UPCE1 [ON | OFF] Turns the UPC-E1 symbology on/off. OFF

GET/SET UPC-
EAN.SUPPLEMENT

0-4

The cmbSDK's mobile camera API only supports turning UPC/EAN supplement code support
on/off, while the DMCC command allows them to be

0: off
1: required

2: require a 2 digit
3: require a 5 digit, or

4: optionally permit them.
The cmbSDK's mobile camera API will treat options 1-4 the same; to simply enable them.

N/A

GET/SET UPC-EAN.VERIFICATION [ON | OFF] Turns verification for UPC barcodes on/off. OFF

GET/SET VIBRATION.GOOD [ON | OFF] Sets/gets whether to vibrate when a code is read (default is ON) N/A

Appendix B - Camera Reader Defaults

Appendix B - Camera Reader Defaults

The following table lists the defaults the SDK uses on startup for the camera reader.

Note: At the low-level, the cmbSDK supported devices can perform two types of configuration resets: a device reset and a config reset. A device reset restores all configuration properties to their saved defaults, while
a config reset restores mostly the scanning settings, leaving communication settings alone. In the table below, those items that are only reset by a device reset are indicated.

Note: The Reader Device method resetConfig() performs a config reset. To perform a device reset, the DMCC command DEVICE.RESET would need to be issued.

SETTING DEFAULT VALUE DEVICE RESET ONLY?

BEEP.GOOD 1 1 (Turn beep on)

C11.CHKCHAR OFF

C11.CHKCHAR-OPTION 1

C39.ASCII OFF

C39.CHKCHAR OFF

C93.ASCII OFF

COM.DMCC-HEADER 1 (Include Result ID) Y

COM.DMCC-RESPONSE 0 (Extended) Y

21 / 22

SETTING DEFAULT VALUE DEVICE RESET ONLY?

DATA.RESULT-TYPE 1 Y

DECODER.1D-SYMBOLORIENTATION 1

DECODER.EFFORT 2

DECODER.MAX-SCAN-TIMEOUT 60

DEVICE.NAME “MX-“ + the last six digits of DEVICE.SERIAL-NUMBER

Symbologies (SYMBOL.*) OFF (all symbologies are disabled)

Symbology sub-types (groups): DATABAR.EXPANDED
DATABAR.LIMITED

DATABAR.RSS14 DATABAR.RSS14STACK UPC-EAN.EAN13
UPC-EAN.EAN8 UPC-EAN.UPC-A UPC-EAN.UPC-E UPC-EAN.UPCE1

ON OFF OFF OFF ON ON ON ON OFF

FOCUS.FOCUSTIME 3

I2O5.CHKCHAR OFF

IMAGE.FORMAT 1 (JPEG)

IMAGE.QUALITY 50

IMAGE.SIZE 1 (1/4 size)

LIGHT.AIMER Default based on cameraMode: 0: NoAimer and FrontCamera
1: PassiveAimer and ActiveAimer Y

LIGHT.AIMER-TIMEOUT 60

LIGHT.INTERNAL-ENABLE OFF

Appendix B - Camera Reader Defaults

Setting Default Value Device Reset Only?

Minimum/maximum code lengths ON 4 40

MSI.CHKCHAR OFF

MSI.CHKCHAR-OPTION 0

TRIGGER.TYPE 2 (Manual)

UPC-EAN.SUPPLEMENT 0

Migration from mwSDK to cmbSDK

Difference between mwSDK and cmbSDK

The Manatee Works Barcode Scanner SDK has been fully integrated into the Cognex Mobile Barcode SDK (cmbSDK). Therefore, we are shifting our focus to the cmbSDK.

The good news is that the cmbSDK is backward compatible with the MW SDK. The cmbSDK simply adds a higher-level API to the scanning methods that utilize the camera of a smartphone or tablet. Or, you can continue
to use the lower-level methods you have become familiar with in the Manatee Works SDK. Your account, login, license(s), and key(s) remain the same. If you do decide to program to the higher-level API, you will have the

22 / 22

added benefit of your app(s) supporting the Cognex MX Series mobile barcode readers, and MX Series mobile terminals, with a single code base.

Remove mwSDK

To avoid collision between mwSDK and cbmSDK we need to completely remove the MW library.

Please remove the following files from the mwSDK:

libBarcodeScanner.a
MWResult.h/m
MWOverlay.h/m
MWParser.h/m

Optionally, if you don't use the helper classes MWImageGetter.h/m and MWImageScanner.h/m you can remove them as well.

Add cmbSDK

Next step is to add cmbSDK framework and use in your project. Please navigate to this url to check step by step how to integrate cmbSDK inside your project.

After that please remove all API's and methods that you are using from mwSDK, and follow our guide from here to see how to implement cmbSDK in your project.

Here are some of the main differences in code between mwSDK and cmbSDK:

1. Initialize, create and connect reader device
- Using mwSDK we don't have that CMBReaderDevice object and we use API methods from the BarcodeScanner class to initialize decoder before starting the scanner process: set active codes, set scanning rect,
set decoder level, register sdk, etc. When we use cmbSDK all of these things are done in code behind with default values when we create a CMBReaderDevice object. Here some of the settings can be set in the
constructor as input parameter and others can be set/changed after we create and connect to reader device. Using cmbSDK not only creating reader device in enough to start scanning process, we also need to
connect to reader device and set necessary delegate methods that will handle response from connection state changed, availability, result received, etc.

2. Start scanning process
- With mwSDK after we initialize decoder we are ready to start the scanning. We do that by creating an AVCaptureDevice object with AVCaptureSession and use that to capture frames from the device's camera, which
we then decode with the mwSDK.
Using cmbSDK there is only one method to start the scanning process and comes from CMBReaderDevice object (startScanning). We can't start scanning process if we don't have valid connection to reader device.
Here we can scan in full screen mode if we create reader device without setting a previewContainer, or if we want to scan in a partial view, we need to create a UIVIew container for the preview that container in our
layout and use it as an input parameter. Result from scanning process will be received in didReceiveReadResultFromReader:(CMBReaderDevice *)reader results:(CMBReadResults *)readResults function from the
CMBReaderDeviceDelegate delegate.

3. Result received
- If we have a successful read or we stop the scanning process and have no read, result object will be received in the didReceiveReadResultFromReader:(CMBReaderDevice *)reader results:(CMBReadResults
*)readResults function. In cmbSDK the result object is more extended than in mwSDK. From that object we can read our barcode result, symbology, image from the last frame, SVG result, etc.

https://cmbdn.cognex.com/v2.2.x/knowledge/-cognex-mobile-barcode-sdk-for-ios/using-cmbsdk/using-cmbsdk-in-xcode
https://cmbdn.cognex.com/v2.2.x/knowledge/-cognex-mobile-barcode-sdk-for-ios/using-cmbsdk/setting-up-an-application-to-use-cmbsdk-for-ios

