
1 / 6

cmbSDK Toolkit (v2.7.x)

Overview

Description

Implement cmbSDK Toolkit in your application

To implement cmbSDK Toolkit in your application, please follow these instructions. Note that cmbSDK Toolkit depends on cmbSDK and you
should always import cmbSDK in your project to use the cmbSDK Toolkit.

Android
iOS

1. First of all make sure that your application supports Kotlin. cmbSDK Toolkit can't be used in applications that don't support Kotlin.
2. Download the Cognex Mobile Barcode SDK for Android and cmbSDK Toolkit from the Cognex Mobile Barcode Scanner

Solutions page.
3. Start Android Studio and add the AAR files as a modules to your project. Starting from Android Studio v4.2.1 and later, .AAR files can't be

imported directly as modules. You need to import the Gradle or Eclipse project:

1. Right-click your app module, select New > Module > Import.

2. In the Source directory field browse the cmbsdktoolkit directory that contains the build.gradle file and the cmbsdktoolkit.aar
file inside. In the Module name field you should see :cmbsdktoolkit, and click Finish. In the same way import cmbSDK.

4. After the new modules are available, right-click your app module, select the Open Module Settings, and choose the Dependencies tab.

5. Click the + sign at the top of the Declared Dependencies dialog box and select the 3 Module dependency.
6. Select cmbsdktoolkit and cmbsdklib-release from the popup window and click OK, making them available under

the Dependencies tab. Also com.squareup.moshi:moshi-kotlin:1.13.0 dependency is needed to be linked inside your project because of
the cmbsdktoolkit module.

http://cmbdn.cognex.com/download

2 / 6

7. Sync your project with the latest changes in the gradle files. Your application build.gradle should contain these dependencies:

1. Download the Cognex Mobile Barcode SDK for iOS and cmbSDK Toolkit from the Cognex Mobile Barcode Scanner Solutions page.
2. Add cmbSDK and cmbSDKToolkit xcframeworks to your Xcode project.
3. Use import statements in your source files to use the API.

import cmbSDK

import cmbSDKToolkit

Dynamic symbology settings

Description
cmbSDK Toolkit contains a Dynamic Symbology Settings module that can be used to configure Cognex readers and the camera API through
a symbology settings screen in your application. If you want to see how it works in live, I would suggest to try one of the Cognex mobile
applications (Quick Setup, Cognex Browser, Cognex Keyboard).

The module displays all known barcode type by connected reader. If user turns on the symbology, a new gear icon is displayed where further
sub-symbology types (if applicable) and symbology dependent settings are available.

There are checks implemented to prevent that all sub-symbology types are turned off.

Certain symbology types have Standard as sub-symbology type, that means the main symbol type and cannot be turned off (disabled).

Here is how to implement in your application

http://cmbdn.cognex.com/download

3 / 6

Android
iOS

Inside the cmbsdktoolkit module, dynamic symbologies settings are implemented as fragment that can be attached from any fragment
manager.
This fragment expects the reader device object as input parameter on which symbology settings will be applied.

parentFragmentManager.beginTransaction()

 .replace(

 R.id.fragment_holder,

 SymbologySettingsFragment.newInstance(readerDevice),

 SymbologySettingsFragment.TAG

)

 .addToBackStack(SymbologySettingsFragment.TAG)

 .commit()

If the reader device is not connected or disconnected while this fragment is shown, symbology settings fragment will be closed and removed
from the back stack with warning message.

The symbology settings module is available as a UIViewController instance that has to be instantiated as the following code snippet
demonstrates.

let symbologySettingsVC = SymbologySettingsTVC(dataManSystem: self.datamanSystem, style: UITableView.Style.grouped)

Please note that you have to pass a CDMDataManSystem object to let the module communicate with the reader. If you are using the high
level CMBReaderDevice class you can get the underlying CDMDataManSystem object by calling the dataManSystem instance method on
your CMBReaderDevice object.

Bluetooth pairing

Description
cmbSDK Toolkit contains a Pairing module that makes the implementation easy to connect to Bluetooth Direct Connect enabled Cognex
readers. If you want to see how it works in live, I would suggest to try one of the Cognex mobile applications (Quick Setup, Cognex Browser,
Cognex Keyboard).

There are several possibilities within the Pairing module to establish a connection with a BT enabled Cognex device:

- One-Step Pairing: This is the easiest approach, as the user needs to read only a DataMatrix code from the phone's screen and after
accepting the OS Pairing request information, the reader and the mobile device are paired and connected to each other.

- Advanced Mode: If the above method does not work for some reason, Pairing modul provides an alternative way to establish the connection.
In this case user needs to put the reader into discoverable mode (either with a data matrix code or following the steps shown on the mobile
device and executing them on the reader's OLED screen) and select the reader to connect to.

Here is how to implement in your application
Android
iOS

First we need to add required bluetooth permissions in the application manifest file:

4 / 6

 <!-- Request legacy Bluetooth permissions on older devices. -->

 <uses-permission

 android:name="android.permission.BLUETOOTH"

 android:maxSdkVersion="30" />

 <uses-permission

 android:name="android.permission.BLUETOOTH_ADMIN"

 android:maxSdkVersion="30" />

 <uses-permission

 android:name="android.permission.ACCESS_FINE_LOCATION"

 android:maxSdkVersion="30"

 tools:ignore="CoarseFineLocation" />

 <!---->

 <uses-permission

 android:name="android.permission.BLUETOOTH_SCAN"

 android:usesPermissionFlags="neverForLocation"

 tools:targetApi="s" />

 <uses-permission android:name="android.permission.BLUETOOTH_CONNECT" />

Inside the cmbsdktoolkit module, bluetooth pairing functionality is implemented as fragment that can be attached from any fragment manager.

This fragment has two optional input parameters:

1. connectAfterPairing - true means bluetooth reader device will be created and connection to it is performed automatically after successful
pairing. If you use false, you can start the process manually to create and connect to bluetooth reader device. Default is true

2. awaitUserApprovalOnConnect - true means that screen where user need to allow connection to the bluetooth reader device to be
completely finished will be shown. If false is set no interaction from user is needed. Default is true

parentFragmentManager.beginTransaction()

 .replace(

 R.id.fragment_holder,

 BluetoothPairingFragment.newInstance(),

 BluetoothPairingFragment.TAG

)

 .addToBackStack(BluetoothPairingFragment.TAG)

 .commit()

The parent activity need to implement BluetoothPairingFragmentListener:

class MainActivity : AppCompatActivity(), BluetoothPairingFragmentListener

onBluetoothDevicePaired(device: BluetoothDevice) - If connectAfterPairing input param is set to true, connection to the bluetooth
device will be performed automatically after successful pairing. If it is set to false, then you can start the connection process.

override fun onBluetoothDevicePaired(device: BluetoothDevice) {

 // In BluetoothPairingFragment as input param we've set connectAfterPairing to true, which means

 // that connection to the bluetooth device will be performed automatically after successful pairing.

 // If we set that to false, from here we can start the connection process

}

5 / 6

onBluetoothDeviceConnectionFailed(error: Throwable) - The throwable error object contains message that explains the cause why
the connection has failed

override fun onBluetoothDeviceConnectionFailed(error: Throwable) {

 Snackbar.make(

 findViewById(R.id.fragment_holder),

 getString(R.string.bluetooth_pairing_error, error.localizedMessage),

 Snackbar.LENGTH_LONG

).show()

}

onBluetoothReaderDeviceConnected(reader: BluetoothReaderDevice) - There is a valid connection to the bluetooth reader device
that is received as input parameter. You can start to configure the reader device or to scan. Do not forget to close and remove the
BluetoothPairingFragment from the back stack if needed.

override fun onBluetoothReaderDeviceConnected(reader: BluetoothReaderDevice) {

 reader.setReaderDeviceListener(this)

 readerDevice = reader

 clearAllFragments()

 configureReaderDevice()

}

Add Bluetooth usage description entries to your Info.plist file in your Xcode project. You might be required to add values for both
the NSBluetoothAlwaysUsageDescription and NSBluetoothPeripheralUsageDescription keys.

You have to add an observer to be notified about a successful pairing event

NotificationCenter.default.addObserver(self, selector: #selector(handlePeripheralDidPairNotification(_ :)), name: .cognexBT

In your notification handler you have to save the paired device's UUID to load it later for reconnection.

@objc func handlePeripheralDidPairNotification(_ notification: NSNotification) {

 let peripheralUUID = notification.userInfo![pairedCognexBTDeviceUUIDKey] as! UUID

 // Save peripheralUUID...

 // Pop the presented pairing viewcontroller

}

To present the pairing UI use the following code snippet

let settingsStoryBoard = UIStoryboard(name: "cmbSDKToolkit", bundle: Bundle(identifier: "com.cognex.cmbSDKToolkit"))
let btPairingVC = settingsStoryBoard.instantiateViewController(withIdentifier: "BT_AUTO_CONNECT_VC") as! BTAutoConnect

6 / 6

btPairingVC.peripheralUUID = // load previously paired device's UUID or use nil

let navController = UINavigationController(rootViewController: btPairingVC as! UIViewController)

Please note that setting nil value for the peripheralUUID property makes the pairing module present the one-step-pairing screen to setup
a new pairing. If you set a previously paired device's UUID the pairing module will try to connect to that device immediately.
Please note that if you paired a certain reader with a certain iOS device and you removed the pairing info from the reader afterwards (for
example by activating discoverable mode or applying factory reset) the subsequent connection attempt will fail and you have to manually
remove the reader from the iOS Bluetooth settings to let the iOS initiate a new pairing process.

