
1 / 30

Cognex Mobile Barcode SDK for Android (v2.7.x)

Overview

Cognex Mobile Barcode SDK (cmbSDK) is a tool for developing mobile barcode scanning applications. CmbSDK is based on Cognex's DataMan
technology and the Manatee Works Barcode Scanning SDK and it allows you to create barcode scanning applications for mobile devices. Mobile
devices used for barcode scanning range from smartphones to the MX Series industrial barcode readers. CmbSDK abstracts the device through a
ReaderDevice connection layer. Once the application establishes its connection with the reader, a single, unified API is used as interface to configure
the device, eliminating the need to write too much conditional code.

CmbSDK provides two basic ReaderDevice connection layers:

MX reader for barcode scanning with devices like the MX-1000 and MX-1502
Camera reader for barcode scanning with the built-in camera of the mobile device

Barcode Scanning with Cognex Device

Barcode Scanning with an MX Mobile Terminal

The cmbSDK supports Cognex’s MX Series Mobile Terminals and some of their features using cmbSDK are the following:

Hardware trigger: MX Mobile Terminals include two built-in triggers for barcode scanning. They also support a pistol grip with trigger that is an
optional accessory.
Illumination and aiming: MX Mobile Terminals have built-in illumination and aiming, making it unnecessary to have a live preview on the
smartphone's screen.
Configurations: You can export and import configuration sets to MX Mobile Terminals using Cognex’s DataMan Setup Tool for Windows, the Quick
Setup mobile application or cmbSDK. You can have multiple scanning applications, each of which requires a different set of device settings.
High-capacity battery: MX Mobile Terminals have an integrated battery that powers the MX scanning engine and the mobile device. The optional
pistol grip includes a second battery that doubles the power capacity of the MX Mobile Terminal.

Debugging on MX Mobile Terminal

Normally you connect your mobile device (phone or tablet) to your PC via the USB or lightning port to start debugging. If an MX Mobile Terminal is
attached to your mobile device via the USB or lightning port while your application is running, you need to debug your application via Wi-Fi.

Debugging on Android:

To debug using Android Studio, connect your Android device via USB to your PC and make sure you can run and debug your application using the USB
cable.

To Connect your Android device to Wi-Fi, make sure that Android Tools are installed beside your IDE.

1. Type "adb tcpip 5555" to set the device's port to 5555 in the terminal.
2. Get the mobile device's IP address by typing "adb shell ip -f inet addr show wlan0" or find it manually in the settings menu of your mobile device.
3. Type "adb connect device_ip:5555" to connect to your mobile device. This prompts a message if it is connected successfully.
4. Disconnect the USB cable from your mobile device.
5. Connect your mobile device to the MX Mobile Terminal and proceed to debug your app as if it was connected via cable.

Note: After you connect your mobile device to the MX Mobile Terminal, Wi-Fi connection might be lost. If the Wi-Fi connection is lost, repeat
step 3.

6. When you are done, type "adb -s device_ip:5555 usb" to switch your device back to USB connection mode.

CAUTION: Leaving the wireless debugging option enabled is not recommended as anyone in your network can connect to your device in debug,
even if you are in data network. Do it only when you are connected to a trusted WiFi and disconnect when you are done.

Barcode Scanning with an Cognex Bluetooth Device



2 / 30

The cmbSDK supports Cognex’s Bluetooth Devices and some of their features using cmbSDK are the following:

Hardware trigger: Cognex Bluetooth Devices include built-in trigger for barcode scanning.
Illumination and aiming: Cognex Bluetooth Devices have built-in illumination and aiming, making it unnecessary to have a live preview on the
smartphone's screen.

Barcode Scanning with a Smartphone

Barcode Scanning with a Smartphone or Tablet

The differences in the capabilities of smartphones as barcode scanning devices result in a user experience different from purpose-built scanners,
impacting the design of the mobile barcode scanning application. By following a few simple guidelines, you can develop applications with the cmbSDK
that work the same way when using an MX Mobile Terminal or the built-in camera of a mobile device.

To initiate barcode scanning without a dedicated hardware trigger, see Mobile Device Triggering.
To aim for barcode scanning with a smartphone that does not have an aimer, see Mobile Device Aiming.
To choose the most suitable orientation for barcode scanning, see Mobile Device Orientation.
To reduce the CPU usage of the mobile device when it performs image analysis and barcode decoding, see Optimizing Mobile Device
Performance.

CmbSDK employs a default set of options for barcode reading with the built-in camera of the mobile device. However, cmbSDK does not implement
saved configurations for the camera reader. This means that every time an application starts that uses the camera reader, it starts with the default
settings of the camera reader. For a list of the default settings, see the Appendix.

Mobile Device Triggering

Without a hardware trigger, mobile devices must use alternative methods to initiate barcode scanning. The cmbSDK supports three methods to trigger
barcode scanning:

Application or workflow driven trigger: The application code or the business logic/workflow of the application invokes the scanning module. In
simple programming terms, it is calling a function like startScanner().
Virtual trigger: To start or stop the scanning process the application provides a button on the screen. Depending on the application design, you
need to press and hold the virtual button to keep the scanner running, this invokes the scanning module.
Simulated trigger: Press one of the volume-down buttons to start or stop the scanning process just like when you pull a trigger on a purpose-built
scanner.

Mobile Device Aiming

The built-in camera provides a live-stream preview on the display of the mobile device for barcode aiming. Reposition the mobile device until the
barcode appears in the field of view of the built-in camera and the application decodes it. CmbSDK provides a built-in preview control that can be
displayed in partial or full screen, and in either portrait or landscape orientation.

The cmbSDK also supports passive aimers: devices attached to the mobile device or its case that use the LED flash of the device as a light source to
project an aiming or targeting pattern. The mobile device can project an aimer pattern similar to a purpose-built scanner so live-preview is not needed.
However, by using the LED flash as an aimer, general scanning illumination is not available.

Mobile Device Orientation

The cmbSDK supports portrait orientation, landscape orientation and auto-rotation for both the presentation of the barcode preview and the scan
direction. Mobile devices can scan most barcodes regardless of the orientation of the application and/or the mobile device.

PORTRAIT OR
LANDSCAPE PORTRAIT ONLY LANDSCAPE ONLY

Most barcodes can be
scanned in either portrait
or landscape orientation.

Most well defined and moderately sized barcodes can be
scanned in a portrait orientation, which is the most

natural way to hold the mobile device.

Example: QR, Data Matrix, Maxicode.

Long, dense, or poorly formed barcodes are
easier to scan in a landscape orientation,

which is of higher resolution.

Example: PDF417.

 

https://cmbdn.cognex.com/v2.2.x/knowledge/cognex-mobile-barcode-sdk-for-android/barcode-scanning-with-a-smartphone-android/mobile-device-triggering
https://cmbdn.cognex.com/v2.2.x/knowledge/cognex-mobile-barcode-sdk-for-android/barcode-scanning-with-a-smartphone-android/mobile-device-aiming
https://cmbdn.cognex.com/v2.2.x/knowledge/cognex-mobile-barcode-sdk-for-android/barcode-scanning-with-a-smartphone-android/mobile-device-orientation
https://cmbdn.cognex.com/v2.2.x/knowledge/cognex-mobile-barcode-sdk-for-android/barcode-scanning-with-a-smartphone-android/optimizing-mobile-device-performance
https://cmbdn.cognex.com/v2.2.x/knowledge/cognex-mobile-barcode-sdk-for-android/appendix-dmcc-for-the-camera-reader


3 / 30

Optimizing Mobile Device Performance

Mobile devices are an ideal platform for barcode decoding. The cmbSDK is optimized for mobile environment, but image analysis and barcode
decoding is still a CPU intensive activity. Since these processes share the mobile device's CPU with the mobile operating system (OS), services, and
other applications, these processes optimize your barcode scanning application and limit it to only using the features of the cmbSDK that they need.

To optimize your application:

Enable decoding only for the barcode types the application needs to scan. The cmbSDK supports the decoding of almost 40 different barcode types
and subtypes, enabling all results in low performance and unexpected errors.
Do not enable certain symbologies and/or advanced features at the same time. 
Optimize your camera resolution. By default, the cmbSDK uses HD images for barcode decoding.
Use an appropriate decoder effort level. The cmbSDK has a configurable effort level that controls how aggressively it performs image analysis. The
cmbSDK uses a default value (level 2) that is sufficient for most barcodes. Using a higher level can result in better decoding of poorer quality
barcodes, resulting in slower performance.

No barcode symbologies are enabled by default, when the cmbSDK is initialized for use with the mobile device's built-in camera.

 

Using cmbSDK

Installing cmbSDK

Installing the Android cmbSDK

Note: cmbSDK is compatible with Android Studio.

1. Download the Cognex Mobile Barcode SDK for Android from the Cognex Mobile Barcode Scanner Solutions page.
2. Start Android Studio and add the SDK AAR file as a module to your project:


- Starting from Android Studio v4.2.1 and later, .AAR files can't be imported directly as modules. You need to import the Gradle or Eclipse project:

1. Right-click your app module, select New > Module > Import.

2. In the Source directory field browse the cmbsdklib-release directory that contains the build.gradle file and the cmbsdklib-release.aar
file inside. In the Module name field you should see :cmbsdklib-release, and click Finish.

- If you are using an older version of Android Studio you can import the .aar file directly:

1. Right click your app module, select New > Module > Import .JAR/.AAR Package, and click Next.

2. Browse the cmbsdklib-release.aar file in the File name field, and click Finish.

3. After the new module is available, right-click your app module, select the Open Module Settings, and choose the Dependencies tab.

https://cmbdn.cognex.com/download


4 / 30

4. Click the + sign at the top of the Declared Dependencies dialog box and select the 3 Module dependency.
5. Select cmbsdklib-release from the popup window and click OK, making the cmbsdklib-release module available under the Dependencies tab.

6. Install the MX Connect application from the Play Store to communicate with MX mobile terminals. If the targetSDK of your app is 30 or higher, you
will need to add the following query to your application’s manifest to allow it to connect to MX terminal via MX Connect:

<queries> 

    <package android:name="com.cognex.mxconnect" />

</queries>

 

Licensing cmbSDK

To use cmbSDK for barcode scanning with a mobile device without an MX mobile terminal, you need to install a license key. If the license key is
missing, asterisks will appear instead of scanned results.

Contact your Cognex Sales Representative for information on how to obtain a license key, including 30-day trial licenses.

Android: 

1. After obtaining your license key, add the following line in the AndroidManifest.xml file of your application under the application tag:

<meta-data android:name="MX_MOBILE_LICENSE" android:value="YOUR_MX_MOBILE_LICENSE"/>

2. Replace YOUR_MX_MOBILE_LICENSE with your license key.

<application

        android:allowBackup="true"

        android:icon="@mipmap/ic_launcher"

        android:label="@string/app_name"

        android:roundIcon="@mipmap/ic_launcher"

        android:supportsRtl="true"

        android:theme="@style/AppTheme">

        <activity android:name=".ScannerActivity" android:configChanges="orientation|screenSize">

            <intent-filter>

                <action android:name="android.intent.action.MAIN" />



                <category android:name="android.intent.category.LAUNCHER" />

            </intent-filter>

        </activity>



        <meta-data android:name="MX_MOBILE_LICENSE" 

           android:value="g/9ytJzcja+sxt4DTEDxR4hp6sZh9bmL97vUx+EE9uY=" />



</application>

You can also add the license key by copying the text below when you create new instance from ReaderDevice.

case PhoneCamera:

          readerDevice = ReaderDevice.getPhoneCameraDevice(this, param_cameraMode,

             PreviewOption.DEFAULTS, null, "SDK_KEY");

 

Migrating from a DataMan SDK for MX Readers to cmbSDK

1. Install the MX Connect application from the Play store. This app enables your mobile phone to seamlessly connect to Cognex MX readers.

https://play.google.com/store/apps/details?id=com.cognex.mxconnect&hl=en
http://play.google.com/store/apps/details?id=com.cognex.mxconnect&hl=en


5 / 30

2. Install cmbSDK to your project.

3. Use DataManSystem.createDataManSystemForMXDevice() factory method to create a DatamanSystem object.

4. Remove:

All DataManSystem.createDataManSystemOverUsb() methods from your project.
All DataManSystem.createDataManSystemOverUsbAccessory() methods from your project.
USB_ DEVICE-ATTACHED and USB_ACCESSORY_ATTACHED Intent filters and meta-data from the AndroidManifest.xml file.
USB and accessory descriptor xml files from the XML folder.

Writing a Mobile Application

CmbSDK provides a high-level, abstract interface for supported scanning devices: the MX mobile terminals and the camera of the mobile phone.

The primary interface between your application and the barcode scanning device is the ReaderDevice class. The ReaderDevice class represents an
abstraction layer to the device, handling all communication and necessary hardware management, such as scanning with a smartphone. 

Perform the following steps to use cmbSDK: 

1. Create an instance from the ReaderDevice class with the type of scanning device you want to use (MX reader or camera reader).

2. Connect to the ReaderDevice instance you created.

3. Configure the ReaderDevice instance, if necessary.

4. Start scanning. 

Initialization and connection need to be performed only once in your application.

MX mobile terminals need to be reconfigured if they become disconnected due to for example timing out or drained battery. To avoid this, you can
save the configuration.
Your application can use both an MX mobile terminal and camera scanning. In this case you have to establish a new connection to a different
device after disconnecting from the current device. You can check our sample app for demonstration to see how it works.

Setting up an Application to Use cmbSDK for Android copy

Perform the following steps to set up and start using cmbSDK:

1. Import the following package members, or just the classes you use:

import com.cognex.cmbsdk.*

2. Build your UI according to your needs, but considering the following aspects:

You have to decide if you you want to show partial or a full screen (that is the default) camera preview. You need a ViewGroup container to
use partial preview, for example RelativeLayout.  No additional container is needed for full screen preview. 

Our sample app (that you can find in the cmbSDK bundle) is using full screen preview. To change the sample app to use partial view, add the
following RelativeLayout at the end of ConstraintLayout in activity_scanner.xml file. Use this layout ad a ViewGroup parameter in reader
device constructor (getPhoneCameraDevice) when reader device is initialized.

<RelativeLayout

   android:id="@+id/rlPreviewContainer"


https://cmbdn.cognex.com/v2.2.x/knowledge/cognex-mobile-barcode-sdk-for-android/using-cmbsdk/installing-cmbsdk
https://cmbdn.cognex.com/knowledge/cognex-mobile-barcode-sdk-for-android/using-cmbsdk/using-the-camera-reader


6 / 30

   android:layout_width="match_parent"

   android:layout_height="200dp"

   app:layout_constraintTop_toTopOf="parent"

   app:layout_constraintStart_toStartOf="parent"

   app:layout_constraintStart_toEndOf="parent" />

To display the last scanned image, an ImageView container is needed.
To display the scanned result as a text, a TextView is needed.

3. Set up the following interfaces to monitor the connection state of the reader and receive information about the read code:

public class ScannerActivity extends AppCompatActivity implements

        OnConnectionCompletedListener, ReaderDeviceListener,

        ActivityCompat.OnRequestPermissionsResultCallback {

....



// The connect method has completed, here you can see whether there was an error with establishing the connection or not

    @Override

    public void onConnectionCompleted(ReaderDevice readerDevice, Throwable error) {

        // If we have valid connection error param will be null,

        // otherwise here is error that inform us about issue that we have while connecting to reader device

        if (error != null) {



            // ask for Camera Permission if necessary

            if (error instanceof CameraPermissionException)

                ActivityCompat.requestPermissions(((ScannerActivity) this), new String[]{Manifest.permission.CAMERA}, REQUEST_P


            updateUIByConnectionState();

        }

    }



// This is called when a connection with the self.readerDevice has been changed.

    // The readerDevice is usable only in the "ConnectionState.Connected" state

    @Override

    public void onConnectionStateChanged(ReaderDevice reader) {

        clearResult();

        if (reader.getConnectionState() == ConnectionState.Connected) {

            // We just connected, so now configure the device how we want it

            configureReaderDevice();

        }



        isScanning = false;

        updateUIByConnectionState();

    }



// This is called after scanning has completed, either by detecting a barcode, canceling the scan by using the on-screen button 
    @Override

    public void onReadResultReceived(ReaderDevice readerDevice, ReadResults results) {

        clearResult();



        if (results.getSubResults() != null && results.getSubResults().size() > 0) {

            for (ReadResult subResult : results.getSubResults()) {

                createResultItem(subResult);

            }

        } else if (results.getCount() > 0) {

            createResultItem(results.getResultAt(0));

        }



        isScanning = false;

        btnScan.setText("START SCANNING");

        resultListAdapter.notifyDataSetChanged();

    }



// This is called when a MX-1xxx device has became available (USB cable was plugged, or MX device was turned on),

    // or when a MX-1xxx that was previously available has become unavailable (USB cable was unplugged, turned off due to inact
    @Override

    public void onAvailabilityChanged(ReaderDevice reader) {

        if (reader.getAvailability() == Availability.AVAILABLE) {

            connectToReaderDevice();

        } else if (reader.getAvailability() == Availability.UNAVAILABLE) {

            AlertDialog.Builder alert = new AlertDialog.Builder(this);

            alert

                    .setTitle("Device became unavailable")

                    .setPositiveButton("OK", null)

                    .create()

                    .show();

        }

    }



7 / 30

4. Instantiate a ReaderDevice object.

Using the MX Reader

Initialize a Reader Device object for MX readers using the following factory method: 

case MX:

      readerDevice = ReaderDevice.getMXDevice(this);



      //Listen when a MX device has became available/unavailable

      if (!availabilityListenerStarted) {

          readerDevice.startAvailabilityListening();

          availabilityListenerStarted = true;

      }

The availability of the MX mobile terminal can change when the device turns on or off, or if the USB cable gets connected or disconnected. You can
handle those changes using the following ReaderDeviceListener interface method: 

public void onAvailabilityChanged(ReaderDevice reader);

 

Using the Camera Reader

You are recommended to use an MX mobile terminal to scan barcodes. However, cmbSDK also supports using the built-in camera of a mobile device.
This includes the support of optional external aimers or illumination, and the customization of the live-stream preview's appearance.

To scan barcodes using the built-in camera of a mobile device, initialize the ReaderDevice object using the getPhoneCameraDevice static method. The
camera reader has several options when initialized. The following parameters are required:

Context
CameraMode
PreviewOption
ViewGroup
RegistrationKey
CustomData

The Context parameter provides a reference to the activity you are currently in.

The CameraMode parameter is of type CameraMode defined in CameraMode.java and it accepts one of the values listed in the following table. 

These modes provide the following default settings for the reader:

The zoom feature is available and a button to control it is visible on the live-stream preview (if displayed).
The simulated hardware trigger (volume control buttons) is disabled.
When startScanning() is called, the decoding process is started.

Based on the selected mode, additional illumination options and behaviors are set, also listed in the table.

VALUE DESCRIPTION ILLUMINATION
LIVE-

STREAM
PREVIEW

NO_AIMER Initializes the reader to use
a live-stream preview on the
mobile device screen so the

user can position the
barcode within the camera’s

field of view for detection
and decoding. Use this

mode if the mobile device

Illumination is
available and a

button to control it
is visible on the

live-stream preview.

Displayed



8 / 30

VALUE DESCRIPTION ILLUMINATION
LIVE-

STREAM
PREVIEW

does not have an aiming
accessory.

If commands are
sent to the reader
for aimer control,
they are ignored.

PASSIVE_AIMER

Initializes the reader to use
a passive aimer. No live-

stream preview is available
on the device screen in this

mode, since an aiming
pattern is projected.

Illumination is not
available, and the

live-stream preview
does not have an

illumination button.

Not
Displayed

If commands are
sent to the reader

for illumination
control, they are

ignored because it
is assumed in this

mode that the built-
in LED of the

mobile device is
being used for the

aimer.

FRONT_CAMERA

Initializes the reader to use
the front camera of the

mobile device, if available.
Use this configuration with
care because most front

facing cameras do not have
auto focus and illumination,

and provide significantly
lower resolution images.

Illumination is not available
in this mode.

The front camera is
used.

Displayed

Illumination is not
available and the

live-stream preview
does not have an

illumination button.

If commands are
sent to the reader

for aimer or
illumination control,
they are ignored.

The PreviewOption parameter is of type PreviewOption defined in PreviewOption.java, and is used to change the reader’s default values or override
defaults derived from the selected CameraMode. You can specify the following options:

VALUE DESCRIPTION

DEFAULTS Accept all defaults set by the CameraMode.

NO_ZOOM_BUTTON
Hides the zoom button on the live-stream

preview, preventing the user from adjusting
the zoom of the mobile device camera.

NO_ILLUMINATION_BUTTON
Hides the illumination button on the live-
stream preview, preventing the user from

toggling the illumination.

HARDWARE_TRIGGER

Enables a simulated hardware trigger (the
volume down button) for starting scanning on

the mobile device. This button only starts
scanning when pressed, it does not need to

be held like a purpose-built scanner’s trigger,
and pressing it a second time does not stop

the scanning process.



9 / 30

VALUE DESCRIPTION

PAUSED

If using a live-stream preview, the preview is
displayed when the startScanning() method is

called, but the reader does not
start decoding until the user presses the on-
screen button to start the scanning process.

ALWAYS_SHOW

Forces a live-stream preview to be
displayed even if an aiming mode is selected

(for example CameraMode ==
PASSIVE_AIMER).

HIGH_RESOLUTION

Uses the device camera in higher resolution,
changing the default 1280x720 resolution

to 1920x1080 on devices that support it, and
to the default resolution on devices that do
not support it. This can help with scanning

small barcodes, but increases the decoding
time as there is more data to process in each

frame.

HIGH_FRAME_RATE
Uses the device's camera in 60 FPS instead
of the default 30 FPS to provide a smoother

camera preview.

SHOW_CLOSE_BUTTON Show close button in partial view.

KEEP_PREVIEW_IN_PAUSED_STATE Keep the preview in paused state after read
or timeout.

The ViewGroup (optional) parameter specifies the container for the live-stream preview. If the parameter is left null, a full screen preview is used.

The RegistrationKey (optional) parameter is used to license your SDK with license key that you have

The CustomData (optional) parameter is used for custom tracking

Example

Create a reader with no aimer, no zoom button, and using a soft trigger:

readerDevice = ReaderDevice.getPhoneCameraDevice(this, CameraMode.NO_AIMER, PreviewOption.NO_ZOOM_BUTTON | PreviewOption.PAUSED);

This starts a preview with the scanner paused and a soft trigger button to toggle scanning. After pressing the soft trigger button, the expected preview
look is this:



10 / 30

The viewfinder in the image has an active scanning surface as a result of having set active symbologies. For more details, see Enabling Symbologies.

Using the Cognex Reader

To scan barcodes using the cognex bluetooth device, initialize the ReaderDevice object using the getBluetoothReaderDevice static method. The
following parameters are required:

Context
BluetoothDevice

The Context parameter provides a reference to the context you are currently in.

The BluetoothDevice parameter is an already paired BluetoothDevice. There are two ways to get a paired BluetoothDevice:

1. Use cmbSDK Toolkit to show pairing UI to the user and perform the pairing process. For more info on how to implement cmbSDK Toolkit
please check the cmbSDK Toolkit Implementation Guide.

2. Provide a BluetoothDevice that is already paired using other methods.

 

Example

Create a reader with already paired BluetoothDevicе:

readerDevice = ReaderDevice.getBluetoothReaderDevice(this, bluetoothDevice);

 

Requesting Camera Permission for Phone Camera Scanner

From Android 6.0 and above you need to request permission from the user to access the built-in camera of the mobile device.

If the camera cannot be opened due to permission issues, the onConnectionCompleted(readerDevice, error) callback contains a
CameraPermissionException in the error parameter. You can check for this exception type with the instanceof operator and request permission within
the Activity.

https://cmbdn.cognex.com/v2.2.x/knowledge/cognex-mobile-barcode-sdk-for-android/cmbsdk-for-android/enabling-symbologies
https://cmbdn.cognex.com/v2.7.x/knowledge/cmbsdk-toolkit


11 / 30

if (error instanceof CameraPermissionException)

      ActivityCompat.requestPermissions(((ScannerActivity) this), new String[]{Manifest.permission.CAMERA}, REQUEST_PERMISSION_CODE

You need to implement the ActivityCompat.OnRequestPermissionResultCallback interface in your Activity to catch the user permission result.

To handle user response in onRequestPermissionResult(…), you can use the following code to retry connecting to the phone camera:

@Override

    public void onRequestPermissionsResult(int requestCode, @NonNull String[] permissions, @NonNull int[] grantResults) {
        // Check result from permission request. If it is allowed by the user, connect to readerDevice

        if (requestCode == REQUEST_PERMISSION_CODE) {

            if (grantResults.length > 0 && grantResults[0] == PackageManager.PERMISSION_GRANTED) {

                if (readerDevice != null && readerDevice.getConnectionState() != ConnectionState.Connected)

                    readerDevice.connect(ScannerActivity.this);

            } else {

                if (ActivityCompat.shouldShowRequestPermissionRationale(((ScannerActivity) this), Manifest.permission.CAMERA)) {

                    AlertDialog.Builder builder = new AlertDialog.Builder(this)

                            .setMessage("You need to allow access to the Camera")

                            .setPositiveButton("OK", new DialogInterface.OnClickListener() {

                                @Override

                                public void onClick(

                                        DialogInterface dialogInterface,

                                        int i) {

                                    ActivityCompat.requestPermissions(ScannerActivity.this, new String[]{Manifest.permission.CAMERA}
                                            REQUEST_PERMISSION_CODE);

                                }

                            })

                            .setNegativeButton("Cancel", null);

                    AlertDialog dialog = builder.create();

                    dialog.show();

                }

            }

        }

    }

 

Connecting to the Reader Device

Before connecting, set the ReaderDeviceListener object to receive events: 

readerDevice.setReaderDeviceListener(this);


For details, see step 3 in Setting up you application to-use the Cognex Mobile Barcode SDK for Android.

Additionally, you can enable sending the last triggered image and SVG from the reader: 

readerDevice.enableImage(true);

readerDevice.enableImageGraphics(true);

Invoke the connect method after initializing the ReaderDevice and setting a listener method to handle responses from the reader. The connect
method takes OnConnectionCompletedListener as parameter: 

 //Make sure the device is turned ON and ready

readerDevice.connect(ScannerActivity.this);

The following listener methods are called with the new ReaderDevice status information:

public void onConnectionStateChanged(ReaderDevice reader);

public void onConnectionCompleted(ReaderDevice reader, Throwable err)

https://cmbdn.cognex.com/v2.2.x/knowledge/cognex-mobile-barcode-sdk-for-android/using-cmbsdk/setting-up-an-application-to-use-cmbsdk-for-android


12 / 30

The onConnectionCompleted method passed as a parameter of connect is also invoked as the connection process completes. If there was a
connection error, this method provides a Throwable object.

Scanning Barcodes

After connecting to the scanning device, you may need to change some of its settings. CmbSDK provides a set of high-level and device-independent
APIs for setting and retrieving the current configuration of the device.

You can start scanning barcodes with a properly configured reader by calling the startScanning method from your ReaderDevice class:

readerDevice.startScanning();

If using an MX mobile terminal, you can press a trigger button on the device to turn the scanner on and read a barcode.
If using the camera reader, cmbSDK starts the camera, displays the configured live-stream preview, and begins analyzing the frames from the video
stream, looking for a configured barcode symbology.

You can stop scanning with the following:

readerDevice.stopScanning();

Scanning stops under one of the following conditions:

The reader found and decoded a barcode.
You released the trigger or pressed the stop button on the live-stream preview screen.
The camera reader timed out without finding a barcode.
The application calls the stopScanning() method.

When a barcode is decoded successfully, you receive a ReadResults iterable result collection object in the ReaderDevice listener method. The
onReadResultReceived listener method is invoked either because the reader decoded a barcode or the scanning process was complete. 

Example

// This is called after scanning has completed, either by detecting a barcode, canceling the scan by using the on-screen button or a
    @Override

    public void onReadResultReceived(ReaderDevice readerDevice, ReadResults results) {

        clearResult();



        if (results.getSubResults() != null && results.getSubResults().size() > 0) {

            for (ReadResult subResult : results.getSubResults()) {

                createResultItem(subResult);

            }

        } else if (results.getCount() > 0) {

            createResultItem(results.getResultAt(0));

        }



        isScanning = false;

        btnScan.setText("START SCANNING");

        resultListAdapter.notifyDataSetChanged();

    }

 

Enabling Symbologies

CmbSDK does not enable any symbologies by default for barcode reading with the built-in camera of the mobile device. You must enable all barcode
symbologies your application needs to scan to achieve optimal scanning performance. For more details, see Optimizing Mobile Device Performance.

Individual symbologies can be enabled using the following method of the ReaderDevice class:

https://cmbdn.cognex.com/v2.2.x/knowledge/cognex-mobile-barcode-sdk-for-android/barcode-scanning-with-a-smartphone/optimizing-mobile-device-performance


13 / 30

public void setSymbologyEnabled(final Symbology symbology, final boolean enable, final OnSymbologyListener listener)
readerDevice.setSymbologyEnabled(Symbology.DATAMATRIX, true, null);

readerDevice.setSymbologyEnabled(Symbology.UPC_EAN, true, null);

All symbologies used for the symbology parameter in this method can be found in ReaderDevice.java. 

Examples 

 /* Enable QR scanning */

readerDevice.setSymbologyEnabled(Symbology.QR, true, null);

You can also use the same method to disable symbologies: 

/ * Disable Code 25 scanning */ readerDevice.setSymbologyEnabled(Symbology.C25, false, null);

You can implement the method for OnSymbologiesListener to check the result of the symbology change:

@Override

public void onSymbologyEnabled(ReaderDevice reader, Symbology symbology, Boolean enabled, Throwable error) {

if (error != null) {

/* Unsuccessful

probably the symbology is unsupported by the current device, or there is a problem with the connection between the readerDevice and 
} else {

// Success }

}

 

Illumination Control

If your reader device is equipped with illumination lights, you can control them: when scanning starts, you can turn them on or off. Use the following
method of your Reader Device object: 

readerDevice.setLightsOn(true, null);

You can implement the interface method for OnLightsListener, which is the second parameter of the method. 

public class ScannerActivity extends AppCompatActivity implements .... OnLightsListener .... { ....

@Override

public void onLightsOnCompleted(ReaderDevice reader, Boolean on, Throwable error) {

if (error != null) { // Unsuccessful

} else {

// Success }

} }

Not all devices and device modes support illumination control. 

Camera Zoom Settings

If the built-in camera of a mobile device is used as the reader device, you can configure zoom levels and how they are used. There are three zoom
levels:



14 / 30

normal: not zoomed (100%)
level 1 zoom (150% on Android by default)
level 2 zoom (300% on Android by default)

The SET CAMERA.ZOOM-PERCENT [100-MAX] [100-MAX] command is for configuring how far the two levels zoom in percentage. 100 is not
zoomed and MAX (goes up to 1000) zooms as far as the device is capable of. The first argument is used for setting level 1 zoom, and the second for
level 2 zoom.

You can check the current zoom setting with the GET CAMERA.ZOOM-PERCENT command, which returns two values: level 1 and level 2 zoom.

Example

readerDevice.getDataManSystem().sendCommand("SET CAMERA.ZOOM-PERCENT 250 500");

Note: The camera needs to be started within cmbSDK at least once to have a valid maximum zoom level. It means that if you set the zoom level to
1000 and the device can only go up to 600, the GET CAMERA.ZOOM-PERCENT command returns 1000 as long as camera is not opened, but it
returns 600 afterwards.

GET/SET CAMERA.ZOOM 0-2 is another command that sets the zoom level or returns the actual setting. Possible values for the SET command are:

0 - normal (not zoomed)
1 - level 1 zoom
2 - level 2 zoom

You can call this command before or even during scanning, and the zoom goes up to the configured level. If scanning is finished, the value is reset to
normal behavior (0).

Example

readerDevice.getDataManSystem().sendCommand("SET CAMERA.ZOOM 2");

 

Camera Exposure Settings

For built-in camera reader device, you can change default camera exposure compensation value with reader device API:

readerDevice.setCameraExposureCompensation(float exposureCompensation) throws UnsupportedOperationException

UnsupportedOperationException will be thrown if hand handled device is used as reader device.

If value that is send is greater than the upper allowed value than upper allowed value will be set, same goes with lower allowed value.

To check the lower and upper allowed values as well as the step value you can use

readerDevice.getCameraExposureCompensationRange() throws UnsupportedOperationException

This API return array of floats (float[]) where the first value is the lower value, second value is the upper and the third one is the step value or null if
these values are not available yet. Same as setCameraExposureCompensation throws UnsupportedOperationException if hand handled device is
used as reader device.

The camera needs to be started within cmbSDK at least once to get the camera exposure compensation range.

 

 



15 / 30

Camera Overlay Customization

When using the mobile device's camera, cmbSDK allows you to see the camera preview inside a preview container or in full screen. This preview also
contains a customizable overlay. The cmbSDK camera overlay features buttons for zooming, flashing and closing the scanner, and a progress bar
indicating the scan timeout.

To use the legacy camera overlay originally used in cmbSDK v2.0.x and ManateeWorks SDK, use this property from MWOverlay before initializing the
readerDevice:

MWOverlay.overlayMode = MWOverlay.OverlayMode.OM_LEGACY;

The customization of the legacy camera overlay is limited, so it is recommended to use the cmbSDK overlay.

When using the cmbSDK overlay:

1. Copy the layout files from the Resources/layout directory into your project and modify them. Use cmb_scanner_partial_view.xml if scanning is
started inside a container (partial view), and use cmb_scanner_view.xml if scanning is started in full screen.

2. Modify the layout according to your needs. For example, you can change the sizes, positions or color of the views, remove views and add your own
views, like an overlay image.

CmbSDK accesses the views it uses (zoom, flash, close buttons, the view used for drawing lines on the corners, and the progress bar) with the
android:tag attribute. Do not change the android:tag attribute, otherwise cmbSDK cannot recognize the views and continues to function as if they
are removed.

Both the cmbSDK and the legacy overlay allow you to change the images used on the zoom and flash buttons if your images have the same name as
the names cmbSDK uses. You can find the images and names used in cmbSDK in the Resources/drawable-mdpi and drawable-hdpi directories.
While the other resolutions are optional, these two directories must contain your images with the correct names so that cmbSDK displays the proper
images.

Both the cmbSDK and the legacy overlay allow you to change the color and width of the rectangle that is displayed when a barcode is detected.

Example:

MWOverlay.locationLineColor = Color.YELLOW;

MWOverlay.locationLineWidth = 6;

 

Advanced Configuration using DataMan Control Commands

Cognex scanning devices implement DataMan Control Commands (DMCC) for configuring and controlling the device. Every feature of the device can
be controlled using this text-based language. The API provides a method for sending DMCC commands to the device. Commands exist both for setting
and querying configuration properties.

The Appendix includes the complete DMCC reference for the camera reader.

The DMCCs for MX mobile terminals and other supported devices can be found in their respective manuals available through Setup Tool.

The following examples show different DMCC sent to the device for more advanced configuration.

Examples 

//Change the scan direction to omnidirectional 

readerDevice.getDataManSystem().sendCommand("SET DECODER.1D-SYMBOLORIENTATION 0", ScannerActivity.this);

//Change live-stream preview's scanning timeout to 10 seconds 

readerDevice.getDataManSystem().sendCommand("SET DECODER.MAX-SCAN-TIMEOUT 10", ScannerActivity.this);

You can also invoke DMCC query commands and receive their response in the OnResponseReceivedListener.onResponseReceived() method. 

https://cmbdn.cognex.com/v2.2.x/knowledge/cognex-mobile-barcode-sdk-for-android/appendix-a-dmcc-for-the-camera-reader/appendix-a-dmcc-for-the-camera-reader


16 / 30

//Get the type of device connected readerDevice.getDataManSystem().sendCommand("GET DEVICE.NAME", new OnResponseReceivedListener() 
@Override

public void onResponseReceived(DataManSystem dataManSystem, DmccResponse dmccResponse) {

if (dmccResponse.getError() != null) {

// Unsuccessful

Log.e("DMCC_ERR", “GET DEVICE.NAME failed”,dmccResponse.getError());

} else {

// Success - Use the following result fields:

//int mResponseId = dmccResponse.getResponseId(); //String mPayLoad = dmccResponse.getPayLoad(); //byte[] mBinaryData = dmccResponse
} );

}

 

Resetting the Configuration

NOTE: This section includes resetting to CmbSDK defaults and does not include instruction on resetting to factory defaults.

CmbSDK includes a method for resetting the device to its default settings. In case of an MX mobile terminal, the default setting are the saved
configurations. In case of a built-in camera, the default settings are the defaults identified in the Appendix, where no symbologies are enabled.

To reset the device, add: 

readerDevice.resetConfig(null);

 

When using an MX mobile terminal, there are three states that we can distinguish:

Factory defaults
Saved configuration: when there were different configurations set on the device and CONFIG.SAVE DMCC was called.
Session configuration: when you make changes on the saved configuration, the changes are valid until the MX Mobile Terminal is rebooted. If it is
rebooted, it has the saved configuration state.

 

You can monitor the completion of this async method using the OnResetConfigListener interface, which is an optional parameter. 

public class ScannerActivity extends Activity implements .... OnResetConfigListener .... { ....

@Override

public void onResetConfigCompleted(ReaderDevice reader, Throwable error) {

if (error != null) { // Unsuccessful

} else {

// Success }

}

 

Working with Results

When a barcode is successfully read, the onReadResultReceived method creates and returns a ReadResult object. In case of having multiple barcodes
successfully read on a single image or frame, multiple ReadResult objects are returned in the ReadResult object.

The ReadResult class has properties describing the result of a barcode read:

is GoodRead() (boolean): tells whether the read was successful or not
get ReadString() (String): the decoded barcode as a string
get Image() (Bitmap): the image/frame that the decoder processed
get ImageGraphics() (String): the boundary path of the barcode as SVG data
get Xml() (String): the raw XML that the decoder returned

https://cmbdn.cognex.com/v2.2.x/knowledge/cognex-mobile-barcode-sdk-for-android/appendix-a-dmcc-for-the-camera-reader


17 / 30

get Symbology (Symbology): the symbology type of the barcode. This enum is defined in ReaderDevice.java.

When a scanning ends with no successful read, a ReadResult is returned with the goodRead property set to false.

To enable the image and imageGraphics properties being filled in the ReadResult object, set the corresponding enableImage() and/or
enableImageGraphics() properties of the ReaderDevice object.

To access the raw bytes from the scanned barcode, you can use the XML property. The bytes are stored as a Base64 String under the "full_string" tag.
The example shows how you can use an XML parser to extract the raw bytes from the XML property.

Example

try {

    XmlPullParserFactory factory = XmlPullParserFactory.newInstance();

    factory.setNamespaceAware(true);

    XmlPullParser xpp = factory.newPullParser();



    String tag = "";



    // the raw bytes will be stored in this variable

    byte[] bytes;



    xpp.setInput(new StringReader(result.getXml()));

    int eventType = xpp.getEventType();

    while (eventType != XmlPullParser.END_DOCUMENT) {

        if (eventType == XmlPullParser.START_TAG) {

            tag = xpp.getName();

        }

        else if (eventType == XmlPullParser.TEXT && tag.equals("full_string")) {

            String base64String = xpp.getText();

            // Get the bytes from the base64 string here

            bytes = Base64.decode(base64String, Base64.DEFAULT);

            break;

        }

        else if (eventType == XmlPullParser.END_TAG && tag.equals("full_string")) {

            tag = "";

            break;

        }

        eventType = xpp.next();

    }

} catch (Exception e) {

    e.printStackTrace();

}

 

Image Results

The image and SVG results are disabled by default, which means that when scanning, the ReadResults do not contain any data in the corresponding
properties.

To enable image results, invoke the enableImage() method from the ReaderDevice object:

readerDevice.enableImage(true);

To enable SVG results, invoke the enableImageGraphics() method on ReaderDevice object:

readerDevice. enableImageGraphics(true); 

 

Handling Disconnects



18 / 30

If a device disconnects due to low battery condition or manual cable disconnection, it can be detected by the onConnectionStateChanged() method of
the ReaderDeviceListener interface. 

Note: The onAvailabilityChanged() method of ReaderDeviceListener is also called when the device becomes physically unavailable. It means that
(re)connection is not possible. Always check the getAvailability() method of the ReaderDevice object before trying to call the connect() method.

cmbSDK Toolkit Implementation Guide

Implement cmbSDK Toolkit in an application

 

To implement cmbSDK Toolkit in your application, please follow these instructions:

1. Add cmbsdktoolkit.aar and cmbsdk.aar in app/libs/ directory

2. In app's build.gradle add the .aar and the required dependencies:

    implementation fileTree(dir: 'libs', include: ['cmbsdklib.aar', 'cmbsdktoolkit.aar'], exclude: [])

    implementation 'androidx.preference:preference-ktx:1.1.1'


3. Make sure the implementing app supports kotlin and androidx

4. Add the following permissions to AndroidManifest.xml:

  <!-- Request legacy Bluetooth permissions on older devices. -->

    <uses-permission

        android:name="android.permission.BLUETOOTH"

        android:maxSdkVersion="30" />

    <uses-permission

        android:name="android.permission.BLUETOOTH_ADMIN"

        android:maxSdkVersion="30" />

    <uses-permission

        android:name="android.permission.ACCESS_FINE_LOCATION"

        android:maxSdkVersion="30" />

    <uses-permission

        android:name="android.permission.BLUETOOTH_SCAN"

        android:usesPermissionFlags="neverForLocation" />

    <uses-permission android:name="android.permission.BLUETOOTH_CONNECT" /> 


Bluetooth Pairing UI

1. Add fragment container in layout xml

    <androidx.fragment.app.FragmentContainerView

        android:id="@+id/flFragmentContainer"

        android:name="com.cognex.mxandroidsettings.bluetooth.BluetoothPairingFragment"

        android:layout_width="match_parent"

        android:layout_height="match_parent"

        android:tag="BluetoothPairingFragment" />


2. Add BluetoothPairingFragmentListener to the implementing activity



19 / 30

public class MainActivity implements BluetoothPairingFragmentListener {

...


 

3. Add the following attributes to the implementing activity in AndroidManifest.xml

    <activity

          ...

          android:configChanges="keyboard|keyboardHidden|orientation|screenSize|screenLayout">

          ...

     <activity/>


Appendix - DMCC for the Camera Reader

Appendix - DMCC for the Camera Reader

The following table lists the various DMCC commands supported by the cmbSDK when using the built-in camera for barcode scanning. 

Many of these commands are also supported by the MX mobile terminals. Commands that are unique to the camera reader are indicated as such
with an X in the last column.

 

GET/SET  COMMAND  PARAMETER(S)  DESCRIPTION  DEFAULT VALUE  

GET/SET  BATTERY.CHARGE   
Returns the current battery

level of the device as a
percentage.

N/A  

  BEEP    Plays the audible beep
(tone).  N/A  

GET/SET  BEEP.GOOD  [0-3] [0-2] 

Sets the number of beeps
(0-3) and the beep

tone/pitch (0- 2, for low,
medium, high). For the
built-in camera, only a

single beep with no pitch
control is supported. Thus,
0 1 turns the beep off, 1 1

turns the beep on. 

1 1 (Turn beep on)  

GET/SET CAMERA.ZOOM 0-2

The possible values for the
SET command are: 0 -

normal (un-zoomed), 1 -
zoom at level 1, 2 - zoom
at level 2. This zoom level
is used during scanning.
When scanning ends it

reset to 0.

N/A x



20 / 30

GET/SET  COMMAND  PARAMETER(S)  DESCRIPTION  DEFAULT VALUE  

GET/SET CAMERA.ZOOM-
PERCENT

[100-MAX] [100-
MAX]

Sets/Returns level 1 zoom
(default 150% on Android,
200% on iOS), and level
2 zoom (default 300% on
Android, 400% on iOS).
Note: The camera needs
to be started at least once
from sdk to have a proper

value for max capable
zoom (MAX)

N/A x

GET/SET  CODABAR.CODESIZE  ON min max

OFF min max

Accepts any length
Codabar.


Sets min/max length of
accepted Codabar. 

N/A X

X

GET/SET CODABAR.QZ-SIZE 0-100 Quiet zone single
strictness size. 50  

GET/SET CODABAR.VERIFICATION ON | OFF Turns verification for
Codabar barcodes on/off. ON X

GET/SET  C11.CHKCHAR  ON | OFF  Turns Code 11 check digit
on/off.  OFF X

GET/SET  C11.CHKCHAR-OPTION  1 2 
Requires single checksum.

Requires double
checksum. 

1 X

X

GET/SET  C11.CODESIZE  ON min max

OFF min max 

Accepts any length Code
11.


Sets min/max length of
accepted Code 11. 

N/A X

X

GET/SET C11.QZ-SIZE 0-100 Quiet zone single
strictness size. 50  

GET/SET C11.VERIFICATION ON | OFF  Turns verification for Code
11 barcodes on/off. ON X

GET/SET C128.QZ-SIZE 0-100 Quiet zone single
strictness size. 50  

GET/SET C128.VERIFICATION ON | OFF Turns verification for Code
128 barcodes on/off. ON X

GET/SET  C25.CODESIZE  ON min max

OFF min max 

Accepts any length Code
25.


Sets min/max length of
accepted Code 25. 

N/A X

X

GET/SET C25.QZ-SIZE 0-100

Quiet zone single
strictness size. Note that

C25.QZ-SIZE and
I2O5.QZ-SIZE are the
same setting for the

camera API.

50  

GET/SET C25.VERIFICATION ON | OFF
Turns verification for Code
25 and Interleaved 2 of 5

barcodes on/off.
ON X



21 / 30

GET/SET  COMMAND  PARAMETER(S)  DESCRIPTION  DEFAULT VALUE  

GET/SET  C39.ASCII  ON | OFF  Turns Code 39 extended
ASCII on/off.  OFF  

GET/SET  C39.CODESIZE  ON min max

OFF min max 

Accepts any length Code
39.


Sets min/max length of
accepted Code 39. 

N/A  

GET/SET  C39.CHKCHAR  ON | OFF  Turns Code 39 check digit
on/off  OFF  

GET/SET C39.QZ-SIZE 0-100 Quiet zone single
strictness size. 50  

GET/SET C39.VERIFICATION ON | OFF Turns verification for Code
39 barcodes on/off. ON X

GET/SET  C93.ASCII  ON | OFF  Turns Code 93 extended
ASCII on/off  OFF X

GET/SET  C93.CODESIZE  ON min max

OFF min max 

Accepts any length Code
93.


Sets min/max length of
accepted Code 93. 

N/A  

GET/SET C93.VERIFICATION ON | OFF Turns verification for Code
93 barcodes on/off. OFF X

GET/SET COM.DMCC-HEADER 0 1
Sets or gets the header
option used in Extended

mode.
0  

GET/SET COM.DMCC-RESPONSE 0 1 DMCC response format. 1:
Extended. 0: Silent (default)  

  CONFIG.DEFAULT   

Resets most of the camera
API settings to default,

except those noted as not
resetting (see Appendix
B). To reset all settings,

use DEVICE.DEFAULT.   

N/A  

  CONFIG.SAVE  

Saves the current
configuration to non-

volatile memory (MX-1xxx
only). Note that when an
MX powers off or enters

sleep mode, the last saved
configuration is restored

when the device wakes up.

N/A  

  CONFIG.RESTORE  

Restores the saved
configuration from non-

volatile memory (MX-1xxx
only).

N/A  



22 / 30

GET/SET  COMMAND  PARAMETER(S)  DESCRIPTION  DEFAULT VALUE  

GET/SET  DATA.RESULT-TYPE 



0

1

2

4

8

Specifies results to be
returned (sum for multiple

values):
0 - None

1 -Text string result
(default)

2 - XML results

4 - XML stats


8 - Scan image (see
IMAGE.* commands)

1  

GET/SET  DATABAR.EXPANDED  ON | OFF 
Turns the DataBar

Expanded symbology
on/off. 

OFF  

GET/SET  DATABAR.LIMITED  ON | OFF  Turns the DataBar Limited
symbology on/off.  ON  

GET/SET 
DATABAR.GROUP
DATABAR.RSS14

ON | OFF 

Turns the DataBar
GROUP (before cmbSDK
2.4.1 known as RSS14)

symbology on/off. 

ON
 
X

GET/SET  DATABAR.RSS14STACK  ON | OFF 

Turns the DataBar RSS14
Stacked symbology on/off.

It is deprecated from
cmbSDK v2.4.1, use
DATABAR.GROUP

instead.

OFF X

GET/SET DATABAR.VERIFICATION ON  Turns verification for
Databar barcodes on/off. ON X

GET/SET  DECODER.1D-
SYMBOLORIENTATION 

0

1

2

3

Use omnidirectional scan
orientation.


Use horizontal and vertical
scan orientation.

Use vertical scan

orientation.

Use horizontal scan

orientation. 

1  

GET/SET  DECODER.EFFORT  1-5 

Sets the effort level for
image analysis/decoding.
The default is 2. Do not

use 4-5 for online
scanning. 

2 X

GET/SET  DECODER.MAX-SCAN-
TIMEOUT  0-120 

Sets the timeout for the
live-stream preview. When

the timeout is reached,
decoding is paused; the
live-stream preview will

remain on-screen. 

60 X

GET DECODER.MAX-
THREADS  

Returns the max number of
CPU threads supported by

the device.
N/A X

GET/SET DECODER.THREADS-
USED [1-MAX]

Specify the max number of
CPU threads that the

scanner can use during the
scanning process.

max number of CPU
threads supported by the

device
X



23 / 30

GET/SET  COMMAND  PARAMETER(S)  DESCRIPTION  DEFAULT VALUE  

  DEVICE.DEFAULT   

Resets the device
(including the camera API)

settings to default (see
Appendix B). 

N/A  

GET  DEVICE.FIRMWARE-
VER    Gets the device firmware

version.  N/A  

GET  DEVICE.ID   

Returns device ID
assigned by Cognex to the

scanning device.
For a built-in camera, SDK

returns 53.

N/A  

GET/SET  DEVICE.NAME   

Returns the name
assigned to the device. By
default, this is “MX-“ plus

the last 6 digits of
DEVICE.SERIAL-

NUMBER. 

“MX-“ + the last
six digits of

DEVICE.SERIAL-
NUMBER

   

GET  DEVICE.SERIAL-
NUMBER   

Returns the serial number
of the device. For a built-in
camera, the SDK assigns

a pseudo-random
number. 

N/A  

GET  DEVICE.TYPE   

Returns the device name
assigned by Cognex to the

scanning device. For a
built-in camera, SDK
returns “MX-Mobile”. 

N/A  

GET/SET  FOCUS.FOCUSTIME  0-10 

Sets the camera’s auto-
focus period (how often

the camera should attempt
to refocus).

3  

GET/SET  I2O5.CHKCHAR  ON | OFF  Turns Interleaved 2 of 5
check digit on/off.  OFF  

GET/SET  I2O5.CODESIZE  ON min max

OFF min max 

Accepts any length
Interleaved 2 of 5.


Sets min/max length of
accepted Interleaved 2 of

5. 

N/A X

X

GET/SET I2O5.QZ-SIZE 0-100

Quiet zone single
strictness size. Note that

C25.QZ-SIZE and
I2O5.QZ-SIZE are the
same setting for the

camera API.

50 X

GET/SET I2O5.VERIFICATION ON | OFF
Turns verification for

Interleaved 2 of 5 and
Code 25 barcodes on/off.

ON X

GET/SET  IMAGE.FORMAT 
0

1

2

Scanner returns image
result in bitmap format.

Scanner returns image
result in JPEG format.

Scanner returns image
result in PNG format. 

1 (JPEG)  



24 / 30

GET/SET  COMMAND  PARAMETER(S)  DESCRIPTION  DEFAULT VALUE  

GET/SET  IMAGE.QUALITY  10, 15, 20, ...90  Specifies JPEG image
quality.  50  

GET/SET  IMAGE.SIZE 

0

1

2

3

Scanner returns full size
image.

Scanner returns 1/4 size
image.

Scanner returns 1/16 size
image.

Scanner returns 1/62 size
image. 

1 (1/4 size)  

GET/SET  LIGHT.AIMER  0-1 
Disables/enables the

aimer (when the scanner
starts).

Default based on
cameraMode: 0: NoAimer

and FrontCamera

1: PassiveAimer

 

GET/SET LIGHT.AIMER-TIMEOUT 0-600 Aimer Timeout in seconds. N/A  

GET/SET  LIGHT.INTERNAL-
ENABLE  ON | OFF 

Enables/disables
illumination (when the

scanner starts). 
OFF  

GET/SET  MSI.CHKCHAR  ON | OFF  Turns MSI Plessey check
digit on/off.  OFF  

GET/SET  MSI.CHKCHAR-OPTION 

0

1

2

3

4

5

Use mod 10 checksum

Use mod 11 checksum

(IBM algorithm)
Use mod 10 mod 10

checksum
Use mod 11 mod 10

checksum (IBM algorithm)

Use mod 11 checksum

(NCR algorithm)

Use mod 11 mod 10

checksum (NCR
algorithm) 

0










X

X

GET/SET  MSI.CODESIZE  ON min max

OFF min max 

Accepts any length MSI
Plessey.


Sets min/max length of
accepted MSI Plessey. 

N/A X

X

GET/SET MSI.QZ-SIZE 0-100 Quiet zone single
strictness size. 50  

GET/SET MSI.VERIFICATION ON | OFF Turns verification for MSI
barcodes on/off. ON X

GET/SET QR.MICRO ON | OFF Turns the QR Micro
symbology on/off OFF  

GET/SET  SYMBOL.AZTECCODE  ON | OFF  Turns the Aztec Code
symbology on/off.  OFF  

GET/SET  SYMBOL.CODABAR  ON | OFF  Turns the Codabar
symbology on/off.  OFF  

GET/SET  SYMBOL.C11  ON | OFF  Turns the Code 11
symbology on/off.  OFF X



25 / 30

GET/SET  COMMAND  PARAMETER(S)  DESCRIPTION  DEFAULT VALUE  

GET/SET  SYMBOL.C128  ON | OFF  Turns the Code 128
symbology on/off.  OFF  

GET/SET  SYMBOL.C25  ON | OFF 
Turns the Code 25
symbology on/off

(standard). 
OFF  

GET/SET  SYMBOL.C39  ON | OFF  Turns the Code 39
symbology on/off.  OFF  

GET/SET  SYMBOL.C93  ON | OFF  Turns the Code 93
symbology on/off.  OFF  

GET/SET  SYMBOL.COOP  ON | OFF 
Turns the COOP

symbology (Code 25
variant) on/off. 

OFF X

GET/SET  SYMBOL.DATAMATRIX  ON | OFF  Turns the Data Matrix
symbology on/off.  OFF  

GET/SET  SYMBOL.DATABAR  ON | OFF 

Turns the DataBar
symbologies on/off. Check
also DATABAR:GROUP,

DATABAR.LIMITED,
DATABAR.EXPANDED to
check which subtypes are
read if Databar is turned

on. 

OFF  

GET/SET  SYMBOL.DOTCODE  ON | OFF  Turns the DotCode
symbology on/off.  OFF  

GET/SET  SYMBOL.IATA  ON | OFF  Turns the IATA symbology
(Code 25 variant) on/off.  OFF X

GET/SET  SYMBOL.INVERTED  ON | OFF 
Turns the Inverted

symbology (Code 25
variant) on/off. 

OFF X

GET/SET  SYMBOL.ITF14  ON | OFF 
Turns the ITF-14

symbology (Code 25
variant) on/off. 

OFF X

GET/SET  SYMBOL.UPC-EAN  ON | OFF 
Turns the UPC-A, UPC-E,

EAN-8, and EAN-13
symbologies on/off. 

OFF  

GET/SET  SYMBOL.MATRIX  ON | OFF 
Turns the Matrix

symbology (Code 25
variant) on/off. 

OFF X

GET/SET  SYMBOL.MAXICODE  ON | OFF  Turns the MaxiCode
symbology on/off.  OFF X

GET/SET  SYMBOL.MSI  ON | OFF  Turns the MSI Plessey
symbology on/off.  OFF  

GET/SET  SYMBOL.PDF417  ON | OFF  Turns the PDF417
symbology on/off.  OFF  

GET/SET  SYMBOL.PLANET  ON | OFF  Turns the PLANET
symbology on/off.  OFF  



26 / 30

GET/SET  COMMAND  PARAMETER(S)  DESCRIPTION  DEFAULT VALUE  

GET/SET  SYMBOL.POSTNET  ON | OFF  Turns the POSTNET
symbology on/off.  OFF  

GET/SET  SYMBOL.4STATE-IMB  ON | OFF 
Turns the Intelligent Mail

Barcode symbology
on/off. 

OFF  

GET/SET  SYMBOL.4STATE-RMC  ON | OFF  Turns the Royal Mail Code
symbology on/off.  OFF  

GET/SET  SYMBOL.QR  ON | OFF 
Turns the QR and

MicroQR symbologies
on/off. 

OFF  

GET/SET TELEPEN.FORCE-
NUMERIC ON | OFF

Turns reading of only
numeric Telepen
symbology on/off.

OFF X

GET/SET TELEPEN.VERIFICATION ON | OFF Turns verification for
Telepen barcodes on/off. OFF X

GET/SET  TRIGGER.TYPE 

0

1

2

3

4

5

Single (not supported)

Presentation (not

supported)

Manual (default)


Burst (not supported)

Self (not supported)


Continuous 

2 (Manual)  

GET/SET  UPC-EAN.EAN13  ON | OFF  Turns the EAN-13
symbology on/off.  ON X

GET/SET  UPC-EAN.EAN8  ON | OFF  Turns the EAN-8
symbology on/off.  ON X

GET/SET  UPC-EAN.UPC-A  ON | OFF  Turns the UPC-A
symbology on/off.  ON X

GET/SET  UPC-EAN.UPC-E  ON | OFF  Turns the UPC-E
symbology on/off.  ON X

GET/SET  UPC-EAN.UPCE1  ON | OFF  Turns the UPC-E1
symbology on/off.  OFF  

GET/SET  UPC-EAN.SUPPLEMENT  0-4

The cmbSDK's mobile
camera API only supports

turning UPC/EAN
supplement code support
on/off, while the DMCC

command allows them to
be


0: off

1: required


2: require a 2 digit

3: require a 5 digit, or


4: optionally permit them.
The cmbSDK's mobile
camera API will treat

options 1-4 the same; to
simply enable them.

0  



27 / 30

GET/SET  COMMAND  PARAMETER(S)  DESCRIPTION  DEFAULT VALUE  

GET/SET UPC-EAN.VERIFICATION ON | OFF Turns verification for UPC
barcodes on/off. OFF X

GET/SET VIBRATION.GOOD ON | OFF
Sets/gets whether to

vibrate when a code is
read (default is ON)

N/A  

 

Appendix B - Camera Reader Defaults

Appendix B - Camera Reader Defaults

The following table lists the defaults the SDK uses on startup for the camera reader.

Note: At the low-level, the cmbSDK supported devices can perform two types of configuration resets: a device reset and a config reset. A device
reset restores all configuration properties to their saved defaults, while a config reset restores mostly the scanning settings, leaving communication
settings alone. In the table below, those items that are only reset by a device reset are indicated.

Note: The Reader Device method resetConfig() performs a config reset. To perform a device reset, the DMCC command DEVICE.RESET would
need to be issued.

 

SETTING DEFAULT VALUE DEVICE RESET
ONLY?

BEEP.GOOD 1 1 (Turn beep on)  

C11.CHKCHAR OFF  

C11.CHKCHAR-OPTION 1  

C39.ASCII OFF  

C39.CHKCHAR OFF  

C93.ASCII OFF  

COM.DMCC-HEADER 1 (Include Result ID) Y

COM.DMCC-RESPONSE 0 (Extended) Y

DATA.RESULT-TYPE 1 Y



28 / 30

SETTING DEFAULT VALUE DEVICE RESET
ONLY?

DECODER.1D-SYMBOLORIENTATION 1  

DECODER.EFFORT 2  

DECODER.MAX-SCAN-TIMEOUT 60  

DEVICE.NAME “MX-“ + the last six digits of DEVICE.SERIAL-
NUMBER  

Symbologies (SYMBOL.*) OFF (all symbologies are disabled)  

Symbology sub-types (groups): DATABAR.EXPANDED

DATABAR.LIMITED


DATABAR.RSS14 DATABAR.RSS14STACK UPC-
EAN.EAN13

UPC-EAN.EAN8 UPC-EAN.UPC-A UPC-EAN.UPC-E
UPCE- AN.UPCE1

ON OFF OFF OFF ON ON ON ON OFF  

FOCUS.FOCUSTIME 3  

I2O5.CHKCHAR OFF  

IMAGE.FORMAT 1 (JPEG)  

IMAGE.QUALITY 50  

IMAGE.SIZE 1 (1/4 size)  

LIGHT.AIMER
Default based on cameraMode: 0: NoAimer

and FrontCamera

1: PassiveAimer

Y

LIGHT.AIMER-TIMEOUT 60  

LIGHT.INTERNAL-ENABLE OFF
 
 

 

Setting Default Value Device Reset Only?

Minimum/maximum code lengths ON 4 40  

MSI.CHKCHAR OFF  



29 / 30

FUNCTIONALITY CMBSDK MW SDK

Initialization ReaderDevice is instantiated. BarcodeScanner object is used.

Connection
Need to connect and set necessary callback that will handle

responses due to connection state changes, availability, result
received. 

There is no need to connect, only
initialize the scanner with

parameters according to your
needs.

Configuration Use DMCC commands or ReaderDevice API methods to configure
reader device

Use BarcodeScanner API methods
to configure scanner

MSI.CHKCHAR-OPTION 0  

TRIGGER.TYPE 2 (Manual)  

UPC-EAN.SUPPLEMENT 0  

 

 

Migration from mwSDK to cmbSDK

Why to migrate to cmbSDK

The Manatee Works Barcode Scanner SDK (MW SDK) has been fully integrated into the Cognex Mobile Barcode SDK (cmbSDK).

cmbSDK is backward compatible with the MW SDK and it adds a higher-level API to the scanning methods that utilize the camera of a smartphone or
tablet. You can also continue to use the lower-level methods you have become familiar within the MW SDK. Your old MW SDK
account and license key(s) remain the same. If you decide to use the higher-level API (from cmbSDK), then your app is supporting the Cognex MX
Series mobile barcode readers, and MX Series mobile terminals too, with a single code base.

Remove mwSDK

To avoid conflicts between MW SDK and cbmSDK we need to remove old library (libBarcodeScannerLib.so) files for all architectures and
mwbscanner.jar file:

1. Please open libs folder inside your project ({project_name}/app/libs) and remove mwbscanner.jar file if there is any.

2. Next open jniLibs folder inside your project ({project_name}/app/src/main/jniLibs) and remove all libBarcodeScannerLib.so files inside all sub
folders (arm64-v8a, armeabi-v7a, x86, x86_64).

Change code to use cmbSDK

Next step is to add cmbsdklib-release.aar file and add it to your project as dependency. Please navigate to this url to check step by step how to
integrate cmbSDK inside your project.

After that please remove all API's and methods that you are using from MW SDK, and follow our guide from here to see how to implement cmbSDK in
your project.

Here are some of the main differences between coding in MW SDK and cmbSDK:

https://cmbdn.cognex.com/knowledge/cognex-mobile-barcode-sdk-for-android/using-cmbsdk/installing-cmbsdk
https://cmbdn.cognex.com/knowledge/cognex-mobile-barcode-sdk-for-android/using-cmbsdk/setting-up-an-application-to-use-cmbsdk-for-android


30 / 30

FUNCTIONALITY CMBSDK MW SDK

Start scanning

Use startScanning() of ReaderDevice object.
Full screen mode: Use null for previewContainer parameter when

instantiating ReaderDevice object.
Partial view: first create the container and handle it to

ReaderDevice object when creating it.

There are two different ways to
start the scanning.

Full screen mode: New Activity
must be started and configured to

start the scanning session
Partial view: Create fragment with

desired size and put scanning
activity in that fragment

Read result
Result object will be received in onReadResultReceived callback.

The read result object contains a lot of details (e.g.: decoded
barcode, symbology, image from last frame, SVG...)

Result will be received after frame
is decoded in handleDecode

function
 


